Skip to content

  • 项目
  • 群组
  • 代码片段
  • 帮助
    • 正在加载...
    • 帮助
    • 为 GitLab 提交贡献
  • 登录/注册
N
nextreal
  • 项目
    • 项目
    • 详情
    • 活动
    • 周期分析
  • 议题 19
    • 议题 19
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 0
    • 合并请求 0
  • CI / CD
    • CI / CD
    • 流水线
    • 作业
    • 计划
  • Wiki
    • Wiki
  • 代码片段
    • 代码片段
  • 成员
    • 成员
  • 折叠边栏
  • 活动
  • 创建新议题
  • 作业
  • 议题看板
  • Allan Dumolo
  • nextreal
  • Issues
  • #17

已关闭
未关闭
在 4月 12, 2025 由 Allan Dumolo@allandumolo109
  • 违规举报
  • 新建问题
举报违规 新建问题

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled variations varying from 1.5 to 70 billion specifications to construct, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we show how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled variations of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that uses support finding out to improve thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key differentiating function is its support knowing (RL) action, which was utilized to fine-tune the model's responses beyond the standard pre-training and tweak process. By incorporating RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately improving both relevance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, implying it's geared up to break down complex queries and reason through them in a detailed way. This assisted reasoning procedure allows the design to produce more precise, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to produce structured responses while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has captured the market's attention as a versatile text-generation model that can be incorporated into different workflows such as representatives, logical thinking and data interpretation jobs.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion criteria, enabling effective inference by routing queries to the most pertinent specialist "clusters." This approach allows the model to focus on different issue domains while maintaining general effectiveness. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more effective models to imitate the behavior and thinking patterns of the larger DeepSeek-R1 model, using it as a teacher model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid hazardous material, and examine models against key security criteria. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to various use cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e instance. To if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation boost, produce a limit boost request and connect to your account group.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For instructions, see Set up permissions to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to introduce safeguards, avoid damaging material, and examine designs against essential security criteria. You can implement safety steps for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to assess user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For yewiki.org the example code to produce the guardrail, see the GitHub repo.

The general flow involves the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following areas demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane. At the time of writing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and select the DeepSeek-R1 design.

The design detail page offers vital details about the design's abilities, rates structure, and execution standards. You can discover detailed use directions, consisting of sample API calls and code snippets for integration. The model supports numerous text generation jobs, including material production, code generation, and concern answering, utilizing its reinforcement learning optimization and CoT thinking abilities. The page also consists of release options and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, select Deploy.

You will be prompted to configure the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, get in a variety of instances (in between 1-100). 6. For example type, choose your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can configure sophisticated security and infrastructure settings, including virtual private cloud (VPC) networking, service role permissions, and file encryption settings. For the majority of utilize cases, the default settings will work well. However, for production implementations, you might wish to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the implementation is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in playground to access an interactive user interface where you can explore different triggers and change design specifications like temperature level and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal results. For instance, material for inference.

This is an outstanding method to explore the design's thinking and text generation capabilities before incorporating it into your applications. The play area supplies immediate feedback, helping you comprehend how the design reacts to numerous inputs and letting you fine-tune your prompts for ideal results.

You can rapidly test the model in the playground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning using a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, configures reasoning criteria, and sends a demand to generate text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML services that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides two convenient approaches: utilizing the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you choose the method that best suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design browser displays available designs, with details like the provider name and design abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card shows key details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if suitable), indicating that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to see the design details page.

    The model details page includes the following details:

    - The design name and service provider details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details.
  • Technical specifications. - Usage standards

    Before you release the design, it's advised to examine the design details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, use the immediately created name or create a custom one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of instances (default: 1). Selecting appropriate instance types and counts is essential for cost and performance optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for accuracy. For this design, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to release the design.

    The deployment process can take a number of minutes to complete.

    When deployment is total, your endpoint status will change to InService. At this moment, the model is all set to accept reasoning requests through the endpoint. You can keep track of the implementation progress on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the deployment is total, you can conjure up the model using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for inference programmatically. The code for releasing the design is offered in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and implement it as shown in the following code:

    Clean up

    To avoid undesirable charges, complete the steps in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the design using Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace implementations.
  5. In the Managed deployments section, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the right deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct innovative options using AWS services and sped up calculate. Currently, he is focused on establishing techniques for fine-tuning and enhancing the inference efficiency of large language models. In his complimentary time, Vivek delights in hiking, seeing movies, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing solutions that assist consumers accelerate their AI journey and unlock business worth.
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无截止日期
0
标记
无
指派标记
  • 查看项目标记
引用: allandumolo109/nextreal#17