Skip to content

  • 项目
  • 群组
  • 代码片段
  • 帮助
    • 正在加载...
    • 帮助
    • 为 GitLab 提交贡献
  • 登录/注册
V
vidy
  • 项目
    • 项目
    • 详情
    • 活动
    • 周期分析
  • 议题 12
    • 议题 12
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 0
    • 合并请求 0
  • CI / CD
    • CI / CD
    • 流水线
    • 作业
    • 计划
  • Wiki
    • Wiki
  • 代码片段
    • 代码片段
  • 成员
    • 成员
  • 折叠边栏
  • 活动
  • 创建新议题
  • 作业
  • 议题看板
  • Alphonso Gartrell
  • vidy
  • Issues
  • #3

已关闭
未关闭
在 2月 22, 2025 由 Alphonso Gartrell@alphonsogartre
  • 违规举报
  • 新建问题
举报违规 新建问题

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, systemcheck-wiki.de we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled variations ranging from 1.5 to 70 billion specifications to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that uses support learning to boost reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key distinguishing feature is its reinforcement learning (RL) action, which was utilized to fine-tune the model's responses beyond the standard pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately improving both relevance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, implying it's geared up to break down complicated inquiries and reason through them in a detailed way. This assisted thinking process permits the model to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to produce structured responses while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually caught the market's attention as a flexible text-generation design that can be integrated into different workflows such as representatives, rational reasoning and data analysis jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion specifications, allowing effective reasoning by routing queries to the most appropriate professional "clusters." This approach enables the design to concentrate on different problem domains while maintaining total performance. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient designs to simulate the habits and reasoning patterns of the bigger DeepSeek-R1 model, utilizing it as an instructor model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise releasing this design with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and evaluate models against essential security requirements. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce several guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limitation increase, create a limitation increase request and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For guidelines, see Set up permissions to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, prevent hazardous material, and examine models against key security requirements. You can carry out precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to examine user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic flow includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After receiving the model's output, another is used. If the output passes this final check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections show reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane. At the time of writing this post, you can use the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 model.

The design detail page offers essential details about the model's capabilities, pricing structure, and implementation standards. You can find detailed use directions, including sample API calls and code bits for integration. The design supports different text generation jobs, consisting of material development, code generation, forum.batman.gainedge.org and concern answering, using its reinforcement discovering optimization and wakewiki.de CoT reasoning capabilities. The page likewise consists of release choices and licensing details to assist you begin with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, pick Deploy.

You will be prompted to set up the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of circumstances, hb9lc.org enter a number of circumstances (between 1-100). 6. For Instance type, pick your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can set up innovative security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service function authorizations, and bytes-the-dust.com encryption settings. For a lot of utilize cases, the default settings will work well. However, for production implementations, you might want to examine these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to start using the design.

When the release is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive user interface where you can experiment with different triggers and adjust design specifications like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal results. For example, material for reasoning.

This is an outstanding method to explore the model's thinking and text generation abilities before integrating it into your applications. The playground supplies immediate feedback, assisting you comprehend how the design reacts to different inputs and letting you fine-tune your prompts for optimum results.

You can rapidly test the design in the play ground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out inference using a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually developed the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, sets up reasoning parameters, and sends a demand to generate text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses two hassle-free methods: utilizing the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both methods to assist you choose the approach that best suits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model internet browser displays available designs, with details like the provider name and design capabilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card shows key details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if applicable), suggesting that this design can be registered with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the design

    5. Choose the model card to view the model details page.

    The model details page includes the following details:

    - The design name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the design, it's suggested to examine the model details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the automatically created name or create a customized one.
  1. For Instance type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is essential for expense and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we highly recommend adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to deploy the design.

    The deployment process can take numerous minutes to finish.

    When implementation is total, your endpoint status will alter to InService. At this point, the design is all set to accept reasoning requests through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the implementation is total, you can conjure up the model using a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get started with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for releasing the design is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Tidy up

    To prevent undesirable charges, finish the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the model utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace implementations.
  5. In the Managed implementations section, locate the endpoint you desire to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the appropriate release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies develop ingenious options utilizing AWS services and accelerated calculate. Currently, he is concentrated on establishing methods for fine-tuning and optimizing the reasoning performance of large language designs. In his downtime, Vivek takes pleasure in hiking, watching motion pictures, and trying various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing options that assist customers accelerate their AI journey and unlock organization worth.
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无截止日期
0
标记
无
指派标记
  • 查看项目标记
引用: alphonsogartre/vidy#3