Skip to content

  • 项目
  • 群组
  • 代码片段
  • 帮助
    • 正在加载...
    • 帮助
    • 为 GitLab 提交贡献
  • 登录/注册
V
vidy
  • 项目
    • 项目
    • 详情
    • 活动
    • 周期分析
  • 议题 12
    • 议题 12
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 0
    • 合并请求 0
  • CI / CD
    • CI / CD
    • 流水线
    • 作业
    • 计划
  • Wiki
    • Wiki
  • 代码片段
    • 代码片段
  • 成员
    • 成员
  • 折叠边栏
  • 活动
  • 创建新议题
  • 作业
  • 议题看板
  • Alphonso Gartrell
  • vidy
  • Issues
  • #8

已关闭
未关闭
在 4月 03, 2025 由 Alphonso Gartrell@alphonsogartre
  • 违规举报
  • 新建问题
举报违规 新建问题

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled variations varying from 1.5 to 70 billion criteria to build, experiment, and properly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled versions of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that utilizes reinforcement discovering to improve reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential identifying feature is its support learning (RL) step, which was utilized to improve the model's reactions beyond the basic pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adapt better to user feedback and objectives, ultimately enhancing both significance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, indicating it's equipped to break down complex questions and factor through them in a detailed manner. This directed thinking process permits the design to produce more precise, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT capabilities, aiming to create structured reactions while concentrating on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has captured the market's attention as a flexible text-generation design that can be incorporated into numerous workflows such as representatives, logical reasoning and data interpretation tasks.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion criteria, allowing efficient inference by routing queries to the most relevant professional "clusters." This method allows the model to specialize in various problem domains while maintaining total effectiveness. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the of the main R1 design to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more effective designs to imitate the behavior and reasoning patterns of the larger DeepSeek-R1 model, using it as an instructor design.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise deploying this model with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent damaging content, and assess designs against key safety requirements. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop multiple guardrails tailored to different usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit boost, disgaeawiki.info develop a limit increase request and reach out to your account team.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For directions, see Establish approvals to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, prevent damaging content, and assess models against essential security criteria. You can carry out security steps for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to assess user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The basic flow includes the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the last result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and choose the DeepSeek-R1 model.

The design detail page provides important details about the model's abilities, rates structure, and application guidelines. You can find detailed use instructions, consisting of sample API calls and code snippets for combination. The model supports various text generation jobs, including material production, code generation, and concern answering, utilizing its support discovering optimization and CoT thinking capabilities. The page likewise includes release options and licensing details to help you get begun with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, choose Deploy.

You will be triggered to set up the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, get in a variety of circumstances (between 1-100). 6. For example type, select your instance type. For optimal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can set up advanced security and infrastructure settings, including virtual private cloud (VPC) networking, service role approvals, and file encryption settings. For many utilize cases, the default settings will work well. However, for production implementations, you might desire to evaluate these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the release is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in play ground to access an interactive interface where you can explore different triggers and change design criteria like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal outcomes. For example, material for reasoning.

This is an exceptional method to check out the model's reasoning and text generation abilities before integrating it into your applications. The play ground provides instant feedback, assisting you understand how the design reacts to numerous inputs and letting you tweak your prompts for optimal results.

You can quickly test the model in the playground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference utilizing a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, configures reasoning parameters, and sends out a demand to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML services that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 convenient approaches: utilizing the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both techniques to help you pick the approach that finest suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design browser displays available designs, with details like the service provider name and model capabilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card. Each model card shows crucial details, consisting of:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if appropriate), suggesting that this model can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to view the design details page.

    The design details page consists of the following details:

    - The design name and provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage standards

    Before you deploy the design, it's advised to evaluate the design details and license terms to validate compatibility with your use case.

    6. Choose Deploy to continue with implementation.

    7. For Endpoint name, utilize the automatically created name or produce a custom-made one.
  1. For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the variety of instances (default: 1). Selecting proper circumstances types and counts is essential for cost and performance optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for precision. For this model, we strongly recommend adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the design.

    The implementation procedure can take several minutes to finish.

    When implementation is total, your endpoint status will change to InService. At this moment, the design is prepared to accept inference demands through the endpoint. You can keep an eye on the release development on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the implementation is complete, you can conjure up the model using a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the necessary AWS authorizations and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for inference programmatically. The code for deploying the model is offered in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as revealed in the following code:

    Tidy up

    To avoid unwanted charges, finish the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the design utilizing Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace implementations.
  5. In the Managed releases area, locate the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the right implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build innovative solutions using AWS services and sped up calculate. Currently, he is focused on establishing strategies for fine-tuning and enhancing the reasoning performance of big language designs. In his spare time, Vivek enjoys treking, viewing films, and attempting various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about building solutions that assist consumers accelerate their AI journey and unlock organization worth.
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无截止日期
0
标记
无
指派标记
  • 查看项目标记
引用: alphonsogartre/vidy#8