Skip to content
项目
群组
代码片段
帮助
正在加载...
帮助
为 GitLab 提交贡献
登录/注册
切换导航
H
h2database
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
分枝图
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
计划
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
分枝图
统计图
创建新议题
作业
提交
议题看板
打开侧边栏
Administrator
h2database
Commits
2d52516f
提交
2d52516f
authored
12 年前
作者:
Thomas Mueller
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
LIRS replacement algorithm
上级
dbce1ba0
显示空白字符变更
内嵌
并排
正在显示
2 个修改的文件
包含
561 行增加
和
116 行删除
+561
-116
TestCache.java
h2/src/test/org/h2/test/store/TestCache.java
+309
-0
CacheLirs.java
h2/src/tools/org/h2/dev/store/btree/CacheLirs.java
+252
-116
没有找到文件。
h2/src/test/org/h2/test/store/TestCache.java
0 → 100644
浏览文件 @
2d52516f
/*
* Copyright 2004-2011 H2 Group. Multiple-Licensed under the H2 License, Version
* 1.0, and under the Eclipse Public License, Version 1.0
* (http://h2database.com/html/license.html). Initial Developer: H2 Group
*/
package
org
.
h2
.
test
.
store
;
import
java.util.HashMap
;
import
java.util.Random
;
import
org.h2.dev.store.btree.CacheLirs
;
import
org.h2.test.TestBase
;
import
org.h2.util.New
;
/**
* Tests the cache algorithm.
*/
public
class
TestCache
extends
TestBase
{
/**
* Run just this test.
*
* @param a ignored
*/
public
static
void
main
(
String
...
a
)
throws
Exception
{
TestBase
.
createCaller
().
init
().
test
();
}
public
void
test
()
throws
Exception
{
testEdgeCases
();
testGetPutPeekRemove
();
testLimitHot
();
testLimitNonResident
();
testBadHashMethod
();
testScanResistance
();
testRandomOperations
();
}
private
void
testEdgeCases
()
{
CacheLirs
<
Integer
,
Integer
>
test
=
CacheLirs
.
newInstance
(
0
);
test
.
put
(
1
,
10
);
assertEquals
(
10
,
test
.
get
(
1
).
intValue
());
}
private
void
testGetPutPeekRemove
()
{
CacheLirs
<
Integer
,
Integer
>
test
=
CacheLirs
.
newInstance
(
4
);
test
.
put
(
1
,
10
);
test
.
put
(
2
,
20
);
test
.
put
(
3
,
30
);
assertNull
(
test
.
peek
(
4
));
assertNull
(
test
.
get
(
4
));
test
.
put
(
4
,
40
);
assertEquals
(
"mem: 4 stack: 4 3 2 1 cold: non-resident:"
,
toString
(
test
));
// move middle to front
assertEquals
(
30
,
test
.
get
(
3
).
intValue
());
assertEquals
(
20
,
test
.
get
(
2
).
intValue
());
assertEquals
(
20
,
test
.
peek
(
2
).
intValue
());
// already on (an optimization)
assertEquals
(
20
,
test
.
get
(
2
).
intValue
());
assertEquals
(
10
,
test
.
peek
(
1
).
intValue
());
assertEquals
(
10
,
test
.
get
(
1
).
intValue
());
assertEquals
(
"mem: 4 stack: 1 2 3 4 cold: non-resident:"
,
toString
(
test
));
test
.
put
(
3
,
30
);
assertEquals
(
"mem: 4 stack: 3 1 2 4 cold: non-resident:"
,
toString
(
test
));
// 5 is cold; will make 4 non-resident
test
.
put
(
5
,
50
);
assertEquals
(
"mem: 4 stack: 5 3 1 2 cold: 5 non-resident: 4"
,
toString
(
test
));
assertNull
(
test
.
peek
(
4
));
assertNull
(
test
.
get
(
4
));
assertEquals
(
10
,
test
.
get
(
1
).
intValue
());
assertEquals
(
20
,
test
.
get
(
2
).
intValue
());
assertEquals
(
30
,
test
.
get
(
3
).
intValue
());
assertEquals
(
"mem: 4 stack: 3 2 1 cold: 5 non-resident: 4"
,
toString
(
test
));
assertEquals
(
50
,
test
.
get
(
5
).
intValue
());
assertEquals
(
"mem: 4 stack: 5 3 2 1 cold: 5 non-resident: 4"
,
toString
(
test
));
assertEquals
(
50
,
test
.
get
(
5
).
intValue
());
assertEquals
(
"mem: 4 stack: 5 3 2 cold: 1 non-resident: 4"
,
toString
(
test
));
// remove
assertTrue
(
test
.
remove
(
5
));
assertFalse
(
test
.
remove
(
5
));
assertEquals
(
"mem: 3 stack: 3 2 1 cold: non-resident: 4"
,
toString
(
test
));
assertTrue
(
test
.
remove
(
4
));
assertFalse
(
test
.
remove
(
4
));
assertEquals
(
"mem: 3 stack: 3 2 1 cold: non-resident:"
,
toString
(
test
));
test
.
put
(
4
,
40
);
test
.
put
(
5
,
50
);
assertEquals
(
"mem: 4 stack: 5 4 3 2 cold: 5 non-resident: 1"
,
toString
(
test
));
test
.
get
(
5
);
test
.
get
(
2
);
test
.
get
(
3
);
test
.
get
(
4
);
assertEquals
(
"mem: 4 stack: 4 3 2 5 cold: 2 non-resident: 1"
,
toString
(
test
));
assertTrue
(
test
.
remove
(
5
));
assertEquals
(
"mem: 3 stack: 4 3 2 cold: non-resident: 1"
,
toString
(
test
));
assertTrue
(
test
.
remove
(
2
));
assertTrue
(
test
.
remove
(
1
));
assertEquals
(
"mem: 2 stack: 4 3 cold: non-resident:"
,
toString
(
test
));
test
.
put
(
1
,
10
);
test
.
put
(
2
,
20
);
assertEquals
(
"mem: 4 stack: 2 1 4 3 cold: non-resident:"
,
toString
(
test
));
test
.
get
(
1
);
test
.
get
(
3
);
test
.
get
(
4
);
assertEquals
(
"mem: 4 stack: 4 3 1 2 cold: non-resident:"
,
toString
(
test
));
assertTrue
(
test
.
remove
(
1
));
assertEquals
(
"mem: 3 stack: 4 3 2 cold: non-resident:"
,
toString
(
test
));
test
.
remove
(
2
);
test
.
remove
(
3
);
test
.
remove
(
4
);
// test clear
test
.
clear
();
assertEquals
(
"mem: 0 stack: cold: non-resident:"
,
toString
(
test
));
}
private
void
testLimitHot
()
{
CacheLirs
<
Integer
,
Integer
>
test
=
CacheLirs
.
newInstance
(
100
);
for
(
int
i
=
0
;
i
<
300
;
i
++)
{
test
.
put
(
i
,
10
*
i
);
}
assertEquals
(
199
,
test
.
getSize
());
assertEquals
(
93
,
test
.
getHotSize
());
assertEquals
(
99
,
test
.
getNonResidentSize
());
}
private
void
testLimitNonResident
()
{
CacheLirs
<
Integer
,
Integer
>
test
=
CacheLirs
.
newInstance
(
4
);
for
(
int
i
=
0
;
i
<
20
;
i
++)
{
test
.
put
(
i
,
10
*
i
);
}
assertEquals
(
"mem: 4 stack: 19 18 17 16 3 2 1 cold: 19 non-resident: 18 17 16"
,
toString
(
test
));
}
private
void
testBadHashMethod
()
{
// ensure an 2^n cache size
final
int
size
=
4
;
/**
* A class with a bad hashCode implementation.
*/
class
BadHash
{
int
x
;
BadHash
(
int
x
)
{
this
.
x
=
x
;
}
public
int
hashCode
()
{
return
(
x
&
1
)
*
size
*
2
;
}
public
boolean
equals
(
Object
o
)
{
return
((
BadHash
)
o
).
x
==
x
;
}
public
String
toString
()
{
return
""
+
x
;
}
}
CacheLirs
<
BadHash
,
Integer
>
test
=
CacheLirs
.
newInstance
(
size
*
2
);
for
(
int
i
=
0
;
i
<
size
;
i
++)
{
test
.
put
(
new
BadHash
(
i
),
i
);
}
for
(
int
i
=
0
;
i
<
size
;
i
++)
{
if
(
i
%
3
==
0
)
{
assertTrue
(
test
.
remove
(
new
BadHash
(
i
)));
assertFalse
(
test
.
remove
(
new
BadHash
(
i
)));
}
}
for
(
int
i
=
0
;
i
<
size
;
i
++)
{
if
(
i
%
3
==
0
)
{
assertNull
(
test
.
get
(
new
BadHash
(
i
)));
}
else
{
assertEquals
(
i
,
test
.
get
(
new
BadHash
(
i
)).
intValue
());
}
}
for
(
int
i
=
0
;
i
<
size
;
i
++)
{
test
.
put
(
new
BadHash
(
i
),
i
);
}
for
(
int
i
=
0
;
i
<
size
;
i
++)
{
if
(
i
%
3
==
0
)
{
assertTrue
(
test
.
remove
(
new
BadHash
(
i
)));
assertFalse
(
test
.
remove
(
new
BadHash
(
i
)));
}
}
for
(
int
i
=
0
;
i
<
size
;
i
++)
{
if
(
i
%
3
==
0
)
{
assertNull
(
test
.
get
(
new
BadHash
(
i
)));
}
else
{
assertEquals
(
i
,
test
.
get
(
new
BadHash
(
i
)).
intValue
());
}
}
}
private
void
testScanResistance
()
{
boolean
log
=
false
;
int
size
=
20
;
// cache size 11 (10 hot, 1 cold)
CacheLirs
<
Integer
,
Integer
>
test
=
CacheLirs
.
newInstance
(
size
/
2
+
1
);
// init the cache with some dummy entries
for
(
int
i
=
0
;
i
<
size
;
i
++)
{
test
.
put
(-
i
,
-
i
*
10
);
}
// init with 0..9, ensure those are hot entries
for
(
int
i
=
0
;
i
<
size
/
2
;
i
++)
{
test
.
put
(
i
,
i
*
10
);
test
.
get
(
i
);
if
(
log
)
{
System
.
out
.
println
(
"get "
+
i
+
" -> "
+
test
);
}
}
// read 0..9, add 10..19 (cold)
for
(
int
i
=
0
;
i
<
size
;
i
++)
{
Integer
x
=
test
.
get
(
i
);
Integer
y
=
test
.
peek
(
i
);
if
(
i
<
size
/
2
)
{
assertTrue
(
"i: "
+
i
,
x
!=
null
);
assertTrue
(
"i: "
+
i
,
y
!=
null
);
assertEquals
(
i
*
10
,
x
.
intValue
());
assertEquals
(
i
*
10
,
y
.
intValue
());
}
else
{
assertNull
(
x
);
assertNull
(
y
);
test
.
put
(
i
,
i
*
10
);
// peek should have no effect
assertEquals
(
i
*
10
,
test
.
peek
(
i
).
intValue
());
}
if
(
log
)
{
System
.
out
.
println
(
"get "
+
i
+
" -> "
+
test
);
}
}
// ensure 0..9 are hot, 10..18 are not resident, 19 is cold
for
(
int
i
=
0
;
i
<
size
;
i
++)
{
Integer
x
=
test
.
get
(
i
);
if
(
i
<
size
/
2
||
i
==
size
-
1
)
{
assertTrue
(
"i: "
+
i
,
x
!=
null
);
assertEquals
(
i
*
10
,
x
.
intValue
());
}
else
{
assertNull
(
x
);
}
}
}
private
void
testRandomOperations
()
{
boolean
log
=
false
;
int
size
=
10
;
Random
r
=
new
Random
(
1
);
for
(
int
j
=
0
;
j
<
100
;
j
++)
{
CacheLirs
<
Integer
,
Integer
>
test
=
CacheLirs
.
newInstance
(
size
/
2
);
HashMap
<
Integer
,
Integer
>
good
=
New
.
hashMap
();
for
(
int
i
=
0
;
i
<
10000
;
i
++)
{
int
key
=
r
.
nextInt
(
size
);
int
value
=
r
.
nextInt
();
switch
(
r
.
nextInt
(
3
))
{
case
0
:
if
(
log
)
{
System
.
out
.
println
(
i
+
" put "
+
key
+
" "
+
value
);
}
good
.
put
(
key
,
value
);
test
.
put
(
key
,
value
);
break
;
case
1
:
if
(
log
)
{
System
.
out
.
println
(
i
+
" get "
+
key
);
}
Integer
a
=
good
.
get
(
key
);
Integer
b
=
test
.
get
(
key
);
if
(
a
==
null
)
{
assertNull
(
b
);
}
else
if
(
b
!=
null
)
{
assertEquals
(
a
,
b
);
}
break
;
case
2
:
if
(
log
)
{
System
.
out
.
println
(
i
+
" remove "
+
key
);
}
good
.
remove
(
key
);
test
.
remove
(
key
);
break
;
}
if
(
log
)
{
System
.
out
.
println
(
" -> "
+
toString
(
test
));
}
}
}
}
private
static
<
K
,
V
>
String
toString
(
CacheLirs
<
K
,
V
>
cache
)
{
StringBuilder
buff
=
new
StringBuilder
();
buff
.
append
(
"mem: "
+
cache
.
getUsedMemory
());
buff
.
append
(
" stack:"
);
for
(
K
k
:
cache
.
keys
(
false
,
false
))
{
buff
.
append
(
' '
).
append
(
k
);
}
buff
.
append
(
" cold:"
);
for
(
K
k
:
cache
.
keys
(
true
,
false
))
{
buff
.
append
(
' '
).
append
(
k
);
}
buff
.
append
(
" non-resident:"
);
for
(
K
k
:
cache
.
keys
(
true
,
true
))
{
buff
.
append
(
' '
).
append
(
k
);
}
return
buff
.
toString
();
}
}
This diff is collapsed.
Click to expand it.
h2/src/tools/org/h2/dev/store/btree/CacheLirs.java
浏览文件 @
2d52516f
...
...
@@ -6,27 +6,51 @@
*/
package
org
.
h2
.
dev
.
store
.
btree
;
import
org.h2.util.MathUtils
;
import
java.util.ArrayList
;
import
java.util.List
;
/**
* An implementation of the LIRS replacement algorithm from
* Xiaodong Zhang and Song Jiang as described in
* http://www.cse.ohio-state.edu/~zhang/lirs-sigmetrics-02.html
* This algorithm is scan resistant.
* A cache.
* <p>
* This implementation is not multi-threading save.
*
* It is important to use a good hash function for the key (there is no guard against bad hash functions).
* <p>
* An implementation of the LIRS replacement algorithm from Xiaodong Zhang and
* Song Jiang as described in
* http://www.cse.ohio-state.edu/~zhang/lirs-sigmetrics-02.html with a few
* smaller changes: An additional queue for non-resident entries is used, to
* prevent unbound memory usage. The maximum size of this queue is at most the
* size of the rest of the stack. This implementation allows each entry to have
* a distinct memory size. At most 6.25% of the mapped entries are cold.
*
* @param <K> the key type
* @param <V> the value type
*/
public
class
CacheLirs
<
K
,
V
>
{
private
long
maxMemory
=
100
;
private
long
maxMemoryHot
;
private
long
maxMemory
;
private
long
currentMemory
;
private
long
currentMemoryHot
;
private
int
averageMemory
=
1
;
private
int
averageMemory
;
private
int
mapSize
,
stackSize
,
queueSize
,
queue2Size
;
private
Entry
<
K
,
V
>[]
entries
;
private
int
mask
;
private
Entry
<
K
,
V
>
head
;
/**
* The stack of recently referenced elements. This includes all hot entries,
* the recently referenced cold entries, and all non-resident cold entries.
*/
private
Entry
<
K
,
V
>
stack
;
/**
* The queue of resident cold entries.
*/
private
Entry
<
K
,
V
>
queue
;
/**
* The queue of non-resident cold entries.
*/
private
Entry
<
K
,
V
>
queue2
;
/**
* Create a new cache.
...
...
@@ -34,68 +58,86 @@ public class CacheLirs<K, V> {
* @param maxMemory the maximum memory to use
* @param averageMemory the average memory usage of an object
*/
p
ublic
CacheLirs
(
long
maxMemory
,
int
averageMemory
)
{
p
rivate
CacheLirs
(
long
maxMemory
,
int
averageMemory
)
{
this
.
maxMemory
=
maxMemory
;
this
.
averageMemory
=
averageMemory
;
clear
();
}
/**
* Create a new cache.
*
* @param size the maximum number of elements
*/
public
static
<
K
,
V
>
CacheLirs
<
K
,
V
>
newInstance
(
int
size
)
{
return
new
CacheLirs
<
K
,
V
>(
size
,
1
);
}
/**
* Clear the cache.
*/
public
void
clear
()
{
int
len
=
MathUtils
.
convertLongToInt
(
maxMemory
/
averageMemory
);
len
=
MathUtils
.
nextPowerOf2
(
len
);
maxMemoryHot
=
maxMemory
*
98
/
100
;
maxMemoryHot
=
Math
.
min
(
maxMemoryHot
,
maxMemory
-
averageMemory
);
long
maxLen
=
(
long
)
(
maxMemory
/
averageMemory
/
0.75
);
long
l
=
8
;
while
(
l
<
maxLen
)
{
l
+=
l
;
}
int
len
=
(
int
)
Math
.
min
(
1L
<<
31
,
l
);
mask
=
len
-
1
;
head
=
new
Entry
<
K
,
V
>();
head
.
stackPrev
=
head
.
stackNext
=
head
;
head
.
queuePrev
=
head
.
queueNext
=
head
;
stack
=
new
Entry
<
K
,
V
>();
stack
.
stackPrev
=
stack
.
stackNext
=
stack
;
queue
=
new
Entry
<
K
,
V
>();
queue
.
queuePrev
=
queue
.
queueNext
=
queue
;
queue2
=
new
Entry
<
K
,
V
>();
queue2
.
queuePrev
=
queue2
.
queueNext
=
queue2
;
// first set to null - avoiding out of memory
entries
=
null
;
@SuppressWarnings
(
"unchecked"
)
Entry
<
K
,
V
>[]
e
=
new
Entry
[
len
];
entries
=
e
;
currentMemory
=
currentMemoryHot
=
0
;
currentMemory
=
0
;
stackSize
=
queueSize
=
queue2Size
=
0
;
}
/**
* Get an entry if the entry is cached.
* Get an entry if the entry is cached. This method does not modify the
* internal state.
*
* @param key the key
* @return the value, or null if not found
*/
public
V
peek
(
K
key
)
{
Entry
<
K
,
V
>
e
=
find
(
key
);
return
e
==
null
?
null
:
e
.
value
;
}
/**
* Get an entry if the entry is cached. This method adjusts the internal
* state of the cache, to ensure commonly used entries stay in the cache.
*
* @param key the key
* @return the value, or null if not found
*/
public
V
get
(
K
key
)
{
Entry
<
K
,
V
>
e
=
find
(
key
);
if
(
e
==
null
)
{
if
(
e
==
null
||
e
.
value
==
null
)
{
return
null
;
}
else
if
(
e
.
hot
)
{
if
(
e
==
head
.
stackNext
)
{
// already the first element
}
else
{
boolean
wasLast
=
e
==
head
.
stackPrev
;
e
.
removeFromStack
();
if
(
wasLast
)
{
}
else
if
(
e
.
isHot
())
{
if
(
e
!=
stack
.
stackNext
)
{
boolean
wasEnd
=
e
==
stack
.
stackPrev
;
removeFromStack
(
e
);
if
(
wasEnd
)
{
pruneStack
();
}
addToStack
(
e
);
}
}
else
{
if
(
e
.
stackPrev
!=
null
)
{
e
.
removeFromStack
();
e
.
hot
=
true
;
currentMemoryHot
+=
e
.
memory
;
e
.
removeFromQueue
();
Entry
<
K
,
V
>
last
=
head
.
stackPrev
;
last
.
removeFromStack
();
last
.
hot
=
false
;
currentMemoryHot
-=
last
.
memory
;
addToQueue
(
last
);
pruneStack
();
removeFromQueue
(
e
);
if
(
e
.
stackNext
!=
null
)
{
removeFromStack
(
e
);
convertOldestHotToCold
();
}
else
{
e
.
removeFromQueue
();
addToQueue
(
e
);
addToQueue
(
queue
,
e
);
}
addToStack
(
e
);
}
...
...
@@ -103,52 +145,41 @@ public class CacheLirs<K, V> {
}
/**
* Add an entry to the cache. This will assume a memory usage of 1.
* Add an entry to the cache. This method is the same as adding an entry
* with the average memory size.
*
* @param key the key
* @param value the value
*/
void
put
(
K
key
,
V
value
)
{
put
(
key
,
value
,
1
);
public
void
put
(
K
key
,
V
value
)
{
put
(
key
,
value
,
averageMemory
);
}
/**
* Add an entry to the cache.
* Add an entry to the cache. The entry may or may not exist in the cache
* yet. This method will usually mark unknown entries as cold and known
* entries as hot.
*
* @param key the key
* @param value the value
* @param memory the memory used for the given entry
*/
void
put
(
K
key
,
V
value
,
int
memory
)
{
Entry
<
K
,
V
>
e
=
find
(
key
);
if
(
e
!=
null
)
{
if
(
currentMemory
+
memory
>
maxMemoryHot
)
{
if
(
head
!=
head
.
queueNext
)
{
remove
(
head
.
queueNext
.
key
);
}
}
public
void
put
(
K
key
,
V
value
,
int
memory
)
{
if
(
find
(
key
)
!=
null
)
{
remove
(
key
);
}
e
=
new
Entry
<
K
,
V
>();
Entry
<
K
,
V
>
e
=
new
Entry
<
K
,
V
>();
e
.
key
=
key
;
int
hash
=
key
.
hashCode
();
// all pages are hot until the memory limit is reached
e
.
hot
=
currentMemory
+
memory
<=
maxMemoryHot
;
e
.
hashCode
=
hash
;
e
.
value
=
value
;
e
.
memory
=
memory
;
int
index
=
hash
&
mask
;
int
index
=
key
.
hashCode
()
&
mask
;
e
.
chained
=
entries
[
index
];
entries
[
index
]
=
e
;
currentMemory
+=
memory
;
if
(
e
.
hot
)
{
currentMemoryHot
+=
memory
;
}
else
{
if
(
currentMemory
>
maxMemory
)
{
removeOld
();
}
addToQueue
(
e
);
if
(
currentMemory
>
maxMemory
&&
mapSize
>
0
)
{
evict
(
e
);
}
mapSize
++;
addToStack
(
e
);
}
...
...
@@ -156,7 +187,7 @@ public class CacheLirs<K, V> {
* Remove an entry.
*
* @param key the key
* @return true if the entry was found
* @return true if the entry was found
(resident or non-resident)
*/
public
boolean
remove
(
K
key
)
{
int
hash
=
key
.
hashCode
();
...
...
@@ -165,7 +196,7 @@ public class CacheLirs<K, V> {
if
(
e
==
null
)
{
return
false
;
}
if
(
e
.
hashCode
==
hash
&&
e
.
key
.
equals
(
key
))
{
if
(
e
.
key
.
equals
(
key
))
{
entries
[
index
]
=
e
.
chained
;
}
else
{
Entry
<
K
,
V
>
last
;
...
...
@@ -175,74 +206,187 @@ public class CacheLirs<K, V> {
if
(
e
==
null
)
{
return
false
;
}
}
while
(
e
.
hashCode
!=
hash
||
!
e
.
key
.
equals
(
key
));
}
while
(!
e
.
key
.
equals
(
key
));
last
.
chained
=
e
.
chained
;
}
mapSize
--;
currentMemory
-=
e
.
memory
;
if
(
e
.
stackNext
!=
null
)
{
e
.
removeFromStack
();
}
if
(
e
.
queueNext
!=
null
)
{
e
.
removeFromQueue
();
}
if
(
e
.
hot
)
{
e
=
head
.
queueNext
;
if
(
e
!=
head
)
{
e
.
removeFromQueue
();
e
.
hot
=
true
;
removeFromStack
(
e
);
}
if
(
e
.
isHot
())
{
// when removing a hot entry, convert the newest cold entry to hot,
// so that we keep the number of hot entries
e
=
queue
.
queueNext
;
if
(
e
!=
queue
)
{
removeFromQueue
(
e
);
if
(
e
.
stackNext
==
null
)
{
// add to bottom of the stack
e
.
stackNext
=
head
;
e
.
stackPrev
=
head
.
stackPrev
;
e
.
stackPrev
.
stackNext
=
e
;
head
.
stackPrev
=
e
;
addToStackBottom
(
e
);
}
}
}
else
{
removeFromQueue
(
e
);
}
pruneStack
();
return
true
;
}
private
void
pruneStack
()
{
while
(
true
)
{
Entry
<
K
,
V
>
last
=
head
.
stackPrev
;
if
(
last
==
head
||
last
.
hot
)
{
break
;
private
void
evict
(
Entry
<
K
,
V
>
newCold
)
{
while
((
queueSize
<<
5
)
<
mapSize
)
{
convertOldestHotToCold
();
}
addToQueue
(
queue
,
newCold
);
while
(
currentMemory
>
maxMemory
)
{
Entry
<
K
,
V
>
e
=
queue
.
queuePrev
;
currentMemory
-=
e
.
memory
;
removeFromQueue
(
e
);
e
.
value
=
null
;
e
.
memory
=
0
;
addToQueue
(
queue2
,
e
);
while
(
queue2Size
+
queue2Size
>
stackSize
)
{
e
=
queue2
.
queuePrev
;
remove
(
e
.
key
);
}
last
.
removeFromStack
();
}
}
private
void
removeOld
()
{
while
(
currentMemory
>
maxMemory
)
{
remove
(
head
.
queuePrev
.
key
);
private
void
convertOldestHotToCold
()
{
Entry
<
K
,
V
>
last
=
stack
.
stackPrev
;
removeFromStack
(
last
);
addToQueue
(
queue
,
last
);
pruneStack
();
}
private
void
pruneStack
()
{
while
(
true
)
{
Entry
<
K
,
V
>
last
=
stack
.
stackPrev
;
if
(
last
==
stack
||
last
.
isHot
())
{
break
;
}
removeFromStack
(
last
);
}
}
private
Entry
<
K
,
V
>
find
(
K
key
)
{
int
hash
=
key
.
hashCode
();
Entry
<
K
,
V
>
e
=
entries
[
hash
&
mask
];
while
(
e
!=
null
&&
(
e
.
hashCode
!=
hash
||
!
e
.
key
.
equals
(
key
)
))
{
while
(
e
!=
null
&&
!
e
.
key
.
equals
(
key
))
{
e
=
e
.
chained
;
}
return
e
;
}
private
void
addToQueue
(
Entry
<
K
,
V
>
e
)
{
e
.
queuePrev
=
head
;
e
.
queueNext
=
head
.
queueNext
;
private
void
addToStack
(
Entry
<
K
,
V
>
e
)
{
e
.
stackPrev
=
stack
;
e
.
stackNext
=
stack
.
stackNext
;
e
.
stackNext
.
stackPrev
=
e
;
stack
.
stackNext
=
e
;
stackSize
++;
}
private
void
addToStackBottom
(
Entry
<
K
,
V
>
e
)
{
e
.
stackNext
=
stack
;
e
.
stackPrev
=
stack
.
stackPrev
;
e
.
stackPrev
.
stackNext
=
e
;
stack
.
stackPrev
=
e
;
stackSize
++;
}
private
void
removeFromStack
(
Entry
<
K
,
V
>
e
)
{
e
.
stackPrev
.
stackNext
=
e
.
stackNext
;
e
.
stackNext
.
stackPrev
=
e
.
stackPrev
;
e
.
stackPrev
=
e
.
stackNext
=
null
;
stackSize
--;
}
private
void
addToQueue
(
Entry
<
K
,
V
>
q
,
Entry
<
K
,
V
>
e
)
{
e
.
queuePrev
=
q
;
e
.
queueNext
=
q
.
queueNext
;
e
.
queueNext
.
queuePrev
=
e
;
head
.
queueNext
=
e
;
q
.
queueNext
=
e
;
if
(
e
.
value
!=
null
)
{
queueSize
++;
}
else
{
queue2Size
++;
}
}
private
void
addToStack
(
Entry
<
K
,
V
>
e
)
{
e
.
stackPrev
=
head
;
e
.
stackNext
=
head
.
stackNext
;
e
.
stackNext
.
stackPrev
=
e
;
head
.
stackNext
=
e
;
private
void
removeFromQueue
(
Entry
<
K
,
V
>
e
)
{
e
.
queuePrev
.
queueNext
=
e
.
queueNext
;
e
.
queueNext
.
queuePrev
=
e
.
queuePrev
;
e
.
queuePrev
=
e
.
queueNext
=
null
;
if
(
e
.
value
!=
null
)
{
queueSize
--;
}
else
{
queue2Size
--;
}
}
/**
* Get the number of mapped entries (resident and non-resident).
*
* @return the number of entries
*/
public
int
getSize
()
{
return
mapSize
;
}
/**
* Get the number of hot entries.
*
* @return the number of entries
*/
public
int
getHotSize
()
{
return
mapSize
-
queueSize
-
queue2Size
;
}
/**
* A cache entry.
* Get the number of non-resident entries.
*
* @return the number of entries
*/
public
int
getNonResidentSize
()
{
return
queue2Size
;
}
/**
* Get the list of keys for this map. This method allows to view the internal
* state of the cache.
*
* @param cold if true only the keys for the cold entries are returned
* @param nonResident true for non-resident entries
* @return the key set
*/
public
List
<
K
>
keys
(
boolean
cold
,
boolean
nonResident
)
{
ArrayList
<
K
>
s
=
new
ArrayList
<
K
>();
if
(
cold
)
{
Entry
<
K
,
V
>
start
=
nonResident
?
queue2
:
queue
;
for
(
Entry
<
K
,
V
>
e
=
start
.
queueNext
;
e
!=
start
;
e
=
e
.
queueNext
)
{
s
.
add
(
e
.
key
);
}
}
else
{
for
(
Entry
<
K
,
V
>
e
=
stack
.
stackNext
;
e
!=
stack
;
e
=
e
.
stackNext
)
{
s
.
add
(
e
.
key
);
}
}
return
s
;
}
/**
* Get the currently used memory.
*
* @return the used memory
*/
public
long
getUsedMemory
()
{
return
currentMemory
;
}
/**
* A cache entry. Each entry is either hot (low inter-reference recency;
* lir), cold (high inter-reference recency; hir), or non-resident-cold. Hot
* entries are in the stack only. Cold entries are in the queue, and may be
* in the stack. Non-resident-cold entries have their value set to null and
* are in the stack and in the non-resident queue.
*
* @param <K> the key type
* @param <V> the value type
...
...
@@ -250,21 +394,13 @@ public class CacheLirs<K, V> {
static
class
Entry
<
K
,
V
>
{
K
key
;
V
value
;
int
hashCode
;
int
memory
;
boolean
hot
;
Entry
<
K
,
V
>
stackPrev
,
stackNext
,
queuePrev
,
queueNext
,
chained
;
void
removeFromStack
()
{
stackPrev
.
stackNext
=
stackNext
;
stackNext
.
stackPrev
=
stackPrev
;
stackPrev
=
stackNext
=
null
;
}
Entry
<
K
,
V
>
stackPrev
,
stackNext
;
Entry
<
K
,
V
>
queuePrev
,
queueNext
;
Entry
<
K
,
V
>
chained
;
void
removeFromQueue
()
{
queuePrev
.
queueNext
=
queueNext
;
queueNext
.
queuePrev
=
queuePrev
;
queuePrev
=
queueNext
=
null
;
boolean
isHot
()
{
return
queueNext
==
null
;
}
}
...
...
This diff is collapsed.
Click to expand it.
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论