Skip to content
项目
群组
代码片段
帮助
正在加载...
帮助
为 GitLab 提交贡献
登录/注册
切换导航
H
h2database
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
分枝图
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
计划
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
分枝图
统计图
创建新议题
作业
提交
议题看板
打开侧边栏
Administrator
h2database
Commits
49d9d2ef
提交
49d9d2ef
authored
12月 15, 2011
作者:
Thomas Mueller
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
In-place stable sorting algorithms (just for fun).
上级
7bd0e66d
隐藏空白字符变更
内嵌
并排
正在显示
4 个修改的文件
包含
794 行增加
和
0 行删除
+794
-0
TestAll.java
h2/src/test/org/h2/test/TestAll.java
+4
-0
TestSort.java
h2/src/test/org/h2/test/unit/TestSort.java
+158
-0
InPlaceStableMergeSort.java
h2/src/tools/org/h2/dev/sort/InPlaceStableMergeSort.java
+322
-0
InPlaceStableQuicksort.java
h2/src/tools/org/h2/dev/sort/InPlaceStableQuicksort.java
+310
-0
没有找到文件。
h2/src/test/org/h2/test/TestAll.java
浏览文件 @
49d9d2ef
...
...
@@ -139,6 +139,7 @@ import org.h2.test.unit.TestIntIntHashMap;
import
org.h2.test.unit.TestJmx
;
import
org.h2.test.unit.TestModifyOnWrite
;
import
org.h2.test.unit.TestObjectDeserialization
;
import
org.h2.test.unit.TestSort
;
import
org.h2.test.unit.TestTraceSystem
;
import
org.h2.test.unit.TestMathUtils
;
import
org.h2.test.unit.TestNetUtils
;
...
...
@@ -347,6 +348,8 @@ java org.h2.test.TestAll timer
int
testWith_TCP_PROTOCOL_VERSION_10
;
int
todoSupportTrailingSemicolonsInDatabaseUrl
;
// System.setProperty("h2.storeLocalTime", "true");
// speedup
...
...
@@ -691,6 +694,7 @@ kill -9 `jps -l | grep "org.h2.test." | cut -d " " -f 1`
runTest
(
"org.h2.test.unit.TestServlet"
);
new
TestSecurity
().
runTest
(
this
);
new
TestShell
().
runTest
(
this
);
new
TestSort
().
runTest
(
this
);
new
TestStreams
().
runTest
(
this
);
new
TestStringCache
().
runTest
(
this
);
new
TestStringUtils
().
runTest
(
this
);
...
...
h2/src/test/org/h2/test/unit/TestSort.java
0 → 100644
浏览文件 @
49d9d2ef
/*
* Copyright 2004-2011 H2 Group. Multiple-Licensed under the H2 License,
* Version 1.0, and under the Eclipse Public License, Version 1.0
* (http://h2database.com/html/license.html).
* Initial Developer: H2 Group
*/
package
org
.
h2
.
test
.
unit
;
import
java.util.Arrays
;
import
java.util.Comparator
;
import
java.util.Random
;
import
java.util.concurrent.atomic.AtomicInteger
;
import
org.h2.dev.sort.InPlaceStableMergeSort
;
import
org.h2.dev.sort.InPlaceStableQuicksort
;
import
org.h2.test.TestBase
;
/**
* Tests the stable in-place sorting implementations.
*/
public
class
TestSort
extends
TestBase
{
AtomicInteger
compareCount
=
new
AtomicInteger
();
Comparator
<
Long
>
comp
=
new
Comparator
<
Long
>()
{
public
int
compare
(
Long
o1
,
Long
o2
)
{
compareCount
.
incrementAndGet
();
return
Long
.
valueOf
(
o1
>>
32
).
compareTo
(
o2
>>
32
);
}
};
private
Long
[]
array
=
new
Long
[
100000
];
private
Class
<?>
clazz
;
/**
* Run just this test.
*
* @param a ignored
*/
public
static
void
main
(
String
...
a
)
throws
Exception
{
TestBase
.
createCaller
().
init
().
test
();
}
public
void
test
()
throws
Exception
{
test
(
InPlaceStableMergeSort
.
class
);
test
(
InPlaceStableQuicksort
.
class
);
test
(
Arrays
.
class
);
}
void
test
(
Class
<?>
clazz
)
throws
Exception
{
this
.
clazz
=
clazz
;
ordered
(
array
);
shuffle
(
array
);
stabalize
(
array
);
test
(
"random"
);
ordered
(
array
);
stabalize
(
array
);
test
(
"ordered"
);
ordered
(
array
);
reverse
(
array
);
stabalize
(
array
);
test
(
"reverse"
);
ordered
(
array
);
stretch
(
array
);
shuffle
(
array
);
stabalize
(
array
);
test
(
"few random"
);
ordered
(
array
);
stretch
(
array
);
stabalize
(
array
);
test
(
"few ordered"
);
ordered
(
array
);
reverse
(
array
);
stretch
(
array
);
stabalize
(
array
);
test
(
"few reverse"
);
System
.
out
.
println
();
}
/**
* Sort the array and verify the result.
*
* @param type the type of data
*/
private
void
test
(
String
type
)
throws
Exception
{
compareCount
.
set
(
0
);
// long t = System.currentTimeMillis();
clazz
.
getMethod
(
"sort"
,
Object
[].
class
,
Comparator
.
class
).
invoke
(
null
,
array
,
comp
);
// System.out.printf(
// "%4d ms; %10d comparisons sorder: %s data: %s\n",
// (System.currentTimeMillis() - t),
// compareCount.get(), clazz, type);
verify
(
array
);
}
private
static
void
verify
(
Long
[]
array
)
{
long
last
=
Long
.
MIN_VALUE
;
int
len
=
array
.
length
;
for
(
int
i
=
0
;
i
<
len
;
i
++)
{
long
x
=
array
[
i
];
long
x1
=
x
>>
32
,
x2
=
x
-
(
x1
<<
32
);
long
last1
=
last
>>
32
,
last2
=
last
-
(
last1
<<
32
);
if
(
x1
<
last1
)
{
if
(
array
.
length
<
1000
)
{
System
.
out
.
println
(
Arrays
.
toString
(
array
));
}
throw
new
RuntimeException
(
""
+
x
);
}
else
if
(
x1
==
last1
&&
x2
<
last2
)
{
if
(
array
.
length
<
1000
)
{
System
.
out
.
println
(
Arrays
.
toString
(
array
));
}
throw
new
RuntimeException
(
""
+
x
);
}
last
=
x
;
}
}
private
static
void
ordered
(
Long
[]
array
)
{
for
(
int
i
=
0
;
i
<
array
.
length
;
i
++)
{
array
[
i
]
=
(
long
)
i
;
}
}
private
static
void
stretch
(
Long
[]
array
)
{
for
(
int
i
=
array
.
length
-
1
;
i
>=
0
;
i
--)
{
array
[
i
]
=
array
[
i
/
4
];
}
}
private
static
void
reverse
(
Long
[]
array
)
{
for
(
int
i
=
0
;
i
<
array
.
length
/
2
;
i
++)
{
long
temp
=
array
[
i
];
array
[
i
]
=
array
[
array
.
length
-
i
-
1
];
array
[
array
.
length
-
i
-
1
]
=
temp
;
}
}
private
static
void
shuffle
(
Long
[]
array
)
{
Random
r
=
new
Random
(
1
);
for
(
int
i
=
0
;
i
<
array
.
length
;
i
++)
{
long
temp
=
array
[
i
];
int
j
=
r
.
nextInt
(
array
.
length
);
array
[
j
]
=
array
[
i
];
array
[
i
]
=
temp
;
}
}
private
static
void
stabalize
(
Long
[]
array
)
{
for
(
int
i
=
0
;
i
<
array
.
length
;
i
++)
{
array
[
i
]
=
(
array
[
i
]
<<
32
)
+
i
;
}
}
}
h2/src/tools/org/h2/dev/sort/InPlaceStableMergeSort.java
0 → 100644
浏览文件 @
49d9d2ef
/*
* Copyright 2004-2011 H2 Group. Multiple-Licensed under the H2 License,
* Version 1.0, and under the Eclipse Public License, Version 1.0
* (http://h2database.com/html/license.html).
* Initial Developer: H2 Group
*/
package
org
.
h2
.
dev
.
sort
;
import
java.util.Comparator
;
/**
* A stable merge sort implementation that uses at most O(log(n)) memory
* and O(n*log(n)*log(n)) time.
*
* @param <T> the element type
*/
public
class
InPlaceStableMergeSort
<
T
>
{
/**
* The minimum size of the temporary array. It is used to speed up sorting
* small blocks.
*/
private
static
final
int
TEMP_SIZE
=
1024
;
/**
* Blocks smaller than this number are sorted using binary insertion sort.
* This usually speeds up sorting.
*/
private
static
final
int
INSERTION_SORT_SIZE
=
16
;
/**
* The data array to sort.
*/
private
T
[]
data
;
/**
* The comparator.
*/
private
Comparator
<
T
>
comp
;
/**
* The temporary array.
*/
private
T
[]
temp
;
/**
* Sort an array using the given comparator.
*
* @param data the data array to sort
* @param comp the comparator
*/
public
static
<
T
>
void
sort
(
T
[]
data
,
Comparator
<
T
>
comp
)
{
new
InPlaceStableMergeSort
<
T
>().
sortArray
(
data
,
comp
);
}
/**
* Sort an array using the given comparator.
*
* @param data the data array to sort
* @param comp the comparator
*/
public
void
sortArray
(
T
[]
data
,
Comparator
<
T
>
comp
)
{
this
.
data
=
data
;
this
.
comp
=
comp
;
int
len
=
Math
.
max
((
int
)
(
100
*
Math
.
log
(
data
.
length
)),
TEMP_SIZE
);
len
=
Math
.
min
(
data
.
length
,
len
);
@SuppressWarnings
(
"unchecked"
)
T
[]
t
=
(
T
[])
new
Object
[
len
];
this
.
temp
=
t
;
mergeSort
(
0
,
data
.
length
-
1
);
}
/**
* Sort a block recursively using merge sort.
*
* @param from the index of the first entry to sort
* @param to the index of the last entry to sort
*/
void
mergeSort
(
int
from
,
int
to
)
{
if
(
to
-
from
<
INSERTION_SORT_SIZE
)
{
binaryInsertionSort
(
from
,
to
);
return
;
}
int
middle
=
(
from
+
to
)
>>>
1
;
mergeSort
(
from
,
middle
);
mergeSort
(
middle
+
1
,
to
);
merge
(
from
,
middle
+
1
,
to
);
}
/**
* Sort a block using the binary insertion sort algorithm.
*
* @param from the index of the first entry to sort
* @param to the index of the last entry to sort
*/
private
void
binaryInsertionSort
(
int
from
,
int
to
)
{
for
(
int
i
=
from
+
1
;
i
<=
to
;
i
++)
{
T
x
=
data
[
i
];
int
ins
=
binarySearch
(
x
,
from
,
i
-
1
);
for
(
int
j
=
i
-
1
;
j
>=
ins
;
j
--)
{
data
[
j
+
1
]
=
data
[
j
];
}
data
[
ins
]
=
x
;
}
}
/**
* Find the index of the element that is larger than x.
*
* @param x the element to search
* @param from the index of the first entry
* @param to the index of the last entry
* @return the position
*/
private
int
binarySearch
(
T
x
,
int
from
,
int
to
)
{
while
(
from
<=
to
)
{
int
m
=
(
from
+
to
)
>>>
1
;
if
(
comp
.
compare
(
x
,
data
[
m
])
>=
0
)
{
from
=
m
+
1
;
}
else
{
to
=
m
-
1
;
}
}
return
from
;
}
/**
* Merge two arrays.
*
* @param from the start of the first range
* @param second start of the second range
* @param to the last element of the second range
*/
private
void
merge
(
int
from
,
int
second
,
int
to
)
{
int
len1
=
second
-
from
,
len2
=
to
-
second
+
1
;
if
(
len1
==
0
||
len2
==
0
)
{
return
;
}
if
(
len1
+
len2
==
2
)
{
if
(
comp
.
compare
(
data
[
second
],
data
[
from
])
<
0
)
{
swap
(
data
,
second
,
from
);
}
return
;
}
if
(
len1
<=
temp
.
length
)
{
System
.
arraycopy
(
data
,
from
,
temp
,
0
,
len1
);
mergeSmall
(
data
,
from
,
temp
,
0
,
len1
-
1
,
data
,
second
,
to
);
return
;
}
else
if
(
len2
<=
temp
.
length
)
{
System
.
arraycopy
(
data
,
second
,
temp
,
0
,
len2
);
System
.
arraycopy
(
data
,
from
,
data
,
to
-
len1
+
1
,
len1
);
mergeSmall
(
data
,
from
,
data
,
to
-
len1
+
1
,
to
,
temp
,
0
,
len2
-
1
);
return
;
}
mergeBig
(
from
,
second
,
to
);
}
/**
* Merge two (large) arrays. This is done recursively by merging the
* beginning of both arrays, and then the end of both arrays.
*
* @param from the start of the first range
* @param second start of the second range
* @param to the last element of the second range
*/
private
void
mergeBig
(
int
from
,
int
second
,
int
to
)
{
int
len1
=
second
-
from
,
len2
=
to
-
second
+
1
;
int
firstCut
,
secondCut
,
newMid
;
if
(
len1
>
len2
)
{
firstCut
=
from
+
len1
/
2
;
secondCut
=
findLower
(
data
[
firstCut
],
second
,
to
);
int
len
=
secondCut
-
second
;
newMid
=
firstCut
+
len
;
}
else
{
int
len
=
len2
/
2
;
secondCut
=
second
+
len
;
firstCut
=
findUpper
(
data
[
secondCut
],
from
,
second
-
1
);
newMid
=
firstCut
+
len
;
}
swapBlocks
(
firstCut
,
second
,
secondCut
-
1
);
merge
(
from
,
firstCut
,
newMid
-
1
);
merge
(
newMid
,
secondCut
,
to
);
}
/**
* Merge two (small) arrays using the temporary array. This is done to speed
* up merging.
*
* @param target the target array
* @param pos the position of the first element in the target array
* @param s1 the first source array
* @param from1 the index of the first element in the first source array
* @param to1 the index of the last element in the first source array
* @param s2 the second source array
* @param from2 the index of the first element in the second source array
* @param to2 the index of the last element in the second source array
*/
private
void
mergeSmall
(
T
[]
target
,
int
pos
,
T
[]
s1
,
int
from1
,
int
to1
,
T
[]
s2
,
int
from2
,
int
to2
)
{
T
x1
=
s1
[
from1
],
x2
=
s2
[
from2
];
while
(
true
)
{
if
(
comp
.
compare
(
x1
,
x2
)
<=
0
)
{
target
[
pos
++]
=
x1
;
if
(++
from1
>
to1
)
{
System
.
arraycopy
(
s2
,
from2
,
target
,
pos
,
to2
-
from2
+
1
);
break
;
}
x1
=
s1
[
from1
];
}
else
{
target
[
pos
++]
=
x2
;
if
(++
from2
>
to2
)
{
System
.
arraycopy
(
s1
,
from1
,
target
,
pos
,
to1
-
from1
+
1
);
break
;
}
x2
=
s2
[
from2
];
}
}
}
/**
* Find the largest element in the sorted array that is smaller than x.
*
* @param x the element to search
* @param from the index of the first entry
* @param to the index of the last entry
* @return the index of the resulting element
*/
private
int
findLower
(
T
x
,
int
from
,
int
to
)
{
int
len
=
to
-
from
+
1
,
half
;
while
(
len
>
0
)
{
half
=
len
/
2
;
int
mid
=
from
+
half
;
if
(
comp
.
compare
(
data
[
mid
],
x
)
<
0
)
{
from
=
mid
+
1
;
len
=
len
-
half
-
1
;
}
else
{
len
=
half
;
}
}
return
from
;
}
/**
* Find the smallest element in the sorted array that is larger than or
* equal to x.
*
* @param x the element to search
* @param from the index of the first entry
* @param to the index of the last entry
* @return the index of the resulting element
*/
private
int
findUpper
(
T
x
,
int
from
,
int
to
)
{
int
len
=
to
-
from
+
1
,
half
;
while
(
len
>
0
)
{
half
=
len
/
2
;
int
mid
=
from
+
half
;
if
(
comp
.
compare
(
data
[
mid
],
x
)
<=
0
)
{
from
=
mid
+
1
;
len
=
len
-
half
-
1
;
}
else
{
len
=
half
;
}
}
return
from
;
}
/**
* Swap the elements of two blocks in the data array. Both blocks are next
* to each other (the second block starts just after the first block ends).
*
* @param from the index of the first element in the first block
* @param second the index of the first element in the second block
* @param to the index of the last element in the second block
*/
private
void
swapBlocks
(
int
from
,
int
second
,
int
to
)
{
int
len1
=
second
-
from
,
len2
=
to
-
second
+
1
;
if
(
len1
==
0
||
len2
==
0
)
{
return
;
}
if
(
len1
<
temp
.
length
)
{
System
.
arraycopy
(
data
,
from
,
temp
,
0
,
len1
);
System
.
arraycopy
(
data
,
second
,
data
,
from
,
len2
);
System
.
arraycopy
(
temp
,
0
,
data
,
from
+
len2
,
len1
);
return
;
}
else
if
(
len2
<
temp
.
length
)
{
System
.
arraycopy
(
data
,
second
,
temp
,
0
,
len2
);
System
.
arraycopy
(
data
,
from
,
data
,
from
+
len2
,
len1
);
System
.
arraycopy
(
temp
,
0
,
data
,
from
,
len2
);
return
;
}
reverseBlock
(
from
,
second
-
1
);
reverseBlock
(
second
,
to
);
reverseBlock
(
from
,
to
);
}
/**
* Reverse all elements in a block.
*
* @param from the index of the first element
* @param to the index of the last element
*/
private
void
reverseBlock
(
int
from
,
int
to
)
{
while
(
from
<
to
)
{
T
old
=
data
[
from
];
data
[
from
++]
=
data
[
to
];
data
[
to
--]
=
old
;
}
}
/**
* Swap two elements in the array.
*
* @param data the array
* @param a the index of the first element
* @param b the index of the second element
*/
private
void
swap
(
T
[]
data
,
int
a
,
int
b
)
{
T
temp
=
data
[
a
];
data
[
a
]
=
data
[
b
];
data
[
b
]
=
temp
;
}
}
\ No newline at end of file
h2/src/tools/org/h2/dev/sort/InPlaceStableQuicksort.java
0 → 100644
浏览文件 @
49d9d2ef
/*
* Copyright 2004-2011 H2 Group. Multiple-Licensed under the H2 License,
* Version 1.0, and under the Eclipse Public License, Version 1.0
* (http://h2database.com/html/license.html).
* Initial Developer: H2 Group
*/
package
org
.
h2
.
dev
.
sort
;
import
java.util.Comparator
;
/**
* A stable quicksort implementation that uses O(log(n)) memory. It normally
* runs in O(n*log(n)*log(n)), but at most in O(n^2).
*
* @param <T> the element type
*/
public
class
InPlaceStableQuicksort
<
T
>
{
/**
* The minimum size of the temporary array. It is used to speed up sorting
* small blocks.
*/
private
static
final
int
TEMP_SIZE
=
1024
;
/**
* Blocks smaller than this number are sorted using binary insertion sort.
* This usually speeds up sorting.
*/
private
static
final
int
INSERTION_SORT_SIZE
=
16
;
/**
* The data array to sort.
*/
private
T
[]
data
;
/**
* The comparator.
*/
private
Comparator
<
T
>
comp
;
/**
* The temporary array.
*/
private
T
[]
temp
;
/**
* Sort an array using the given comparator.
*
* @param data the data array to sort
* @param comp the comparator
*/
public
static
<
T
>
void
sort
(
T
[]
data
,
Comparator
<
T
>
comp
)
{
new
InPlaceStableQuicksort
<
T
>().
sortArray
(
data
,
comp
);
}
/**
* Sort an array using the given comparator.
*
* @param data the data array to sort
* @param comp the comparator
*/
public
void
sortArray
(
T
[]
data
,
Comparator
<
T
>
comp
)
{
this
.
data
=
data
;
this
.
comp
=
comp
;
int
len
=
Math
.
max
((
int
)
(
100
*
Math
.
log
(
data
.
length
)),
TEMP_SIZE
);
len
=
Math
.
min
(
data
.
length
,
len
);
@SuppressWarnings
(
"unchecked"
)
T
[]
t
=
(
T
[])
new
Object
[
len
];
this
.
temp
=
t
;
quicksort
(
0
,
data
.
length
-
1
);
}
/**
* Sort a block using the quicksort algorithm.
*
* @param from the index of the first entry to sort
* @param to the index of the last entry to sort
*/
private
void
quicksort
(
int
from
,
int
to
)
{
while
(
to
>
from
)
{
if
(
to
-
from
<
INSERTION_SORT_SIZE
)
{
binaryInsertionSort
(
from
,
to
);
return
;
}
T
pivot
=
selectPivot
(
from
,
to
);
int
second
=
partition
(
pivot
,
from
,
to
);
if
(
second
>
to
)
{
pivot
=
selectPivot
(
from
,
to
);
pivot
=
data
[
to
];
second
=
partition
(
pivot
,
from
,
to
);
if
(
second
>
to
)
{
second
--;
}
}
quicksort
(
from
,
second
-
1
);
from
=
second
;
}
}
/**
* Sort a block using the binary insertion sort algorithm.
*
* @param from the index of the first entry to sort
* @param to the index of the last entry to sort
*/
private
void
binaryInsertionSort
(
int
from
,
int
to
)
{
for
(
int
i
=
from
+
1
;
i
<=
to
;
i
++)
{
T
x
=
data
[
i
];
int
ins
=
binarySearch
(
x
,
from
,
i
-
1
);
for
(
int
j
=
i
-
1
;
j
>=
ins
;
j
--)
{
data
[
j
+
1
]
=
data
[
j
];
}
data
[
ins
]
=
x
;
}
}
/**
* Find the index of the element that is larger than x.
*
* @param x the element to search
* @param from the index of the first entry
* @param to the index of the last entry
* @return the position
*/
private
int
binarySearch
(
T
x
,
int
from
,
int
to
)
{
while
(
from
<=
to
)
{
int
m
=
(
from
+
to
)
>>>
1
;
if
(
comp
.
compare
(
x
,
data
[
m
])
>=
0
)
{
from
=
m
+
1
;
}
else
{
to
=
m
-
1
;
}
}
return
from
;
}
/**
* Move all elements that are bigger than the pivot to the end of the list,
* and return the partitioning index. The partitioning index is the start
* index of the range where all elements are larger than the pivot. If the
* partitioning index is larger than the 'to' index, then all elements are
* smaller or equal to the pivot.
*
* @param pivot the pivot
* @param from the index of the first element
* @param to the index of the last element
* @return the the first element of the second partition
*/
private
int
partition
(
T
pivot
,
int
from
,
int
to
)
{
if
(
to
-
from
<
temp
.
length
)
{
return
partitionSmall
(
pivot
,
from
,
to
);
}
int
m
=
(
from
+
to
+
1
)
/
2
;
int
m1
=
partition
(
pivot
,
from
,
m
-
1
);
int
m2
=
partition
(
pivot
,
m
,
to
);
swapBlocks
(
m1
,
m
,
m2
-
1
);
return
m1
+
m2
-
m
;
}
/**
* Partition a small block using the temporary array. This will speed up partitioning.
*
* @param pivot the pivot
* @param from the index of the first element
* @param to the index of the last element
* @return the the first element of the second partition
*/
private
int
partitionSmall
(
T
pivot
,
int
from
,
int
to
)
{
int
tempIndex
=
0
,
dataIndex
=
from
;
for
(
int
i
=
from
;
i
<=
to
;
i
++)
{
T
x
=
data
[
i
];
if
(
comp
.
compare
(
x
,
pivot
)
<=
0
)
{
if
(
tempIndex
>
0
)
{
data
[
dataIndex
]
=
x
;
}
dataIndex
++;
}
else
{
temp
[
tempIndex
++]
=
x
;
}
}
if
(
tempIndex
>
0
)
{
System
.
arraycopy
(
temp
,
0
,
data
,
dataIndex
,
tempIndex
);
}
return
dataIndex
;
}
/**
* Swap the elements of two blocks in the data array. Both blocks are next
* to each other (the second block starts just after the first block ends).
*
* @param from the index of the first element in the first block
* @param second the index of the first element in the second block
* @param to the index of the last element in the second block
*/
private
void
swapBlocks
(
int
from
,
int
second
,
int
to
)
{
int
len1
=
second
-
from
,
len2
=
to
-
second
+
1
;
if
(
len1
==
0
||
len2
==
0
)
{
return
;
}
if
(
len1
<
temp
.
length
)
{
System
.
arraycopy
(
data
,
from
,
temp
,
0
,
len1
);
System
.
arraycopy
(
data
,
second
,
data
,
from
,
len2
);
System
.
arraycopy
(
temp
,
0
,
data
,
from
+
len2
,
len1
);
return
;
}
else
if
(
len2
<
temp
.
length
)
{
System
.
arraycopy
(
data
,
second
,
temp
,
0
,
len2
);
System
.
arraycopy
(
data
,
from
,
data
,
from
+
len2
,
len1
);
System
.
arraycopy
(
temp
,
0
,
data
,
from
,
len2
);
return
;
}
reverseBlock
(
from
,
second
-
1
);
reverseBlock
(
second
,
to
);
reverseBlock
(
from
,
to
);
}
/**
* Reverse all elements in a block.
*
* @param from the index of the first element
* @param to the index of the last element
*/
private
void
reverseBlock
(
int
from
,
int
to
)
{
while
(
from
<
to
)
{
T
old
=
data
[
from
];
data
[
from
++]
=
data
[
to
];
data
[
to
--]
=
old
;
}
}
/**
* Select a pivot. To ensure a good pivot is select, the median element of a
* sample of the data is calculated.
*
* @param from the index of the first element
* @param to the index of the last element
* @return the pivot
*/
private
T
selectPivot
(
int
from
,
int
to
)
{
int
count
=
(
int
)
(
6
*
Math
.
log10
(
to
-
from
));
count
=
Math
.
min
(
count
,
temp
.
length
);
int
step
=
(
to
-
from
)
/
count
;
for
(
int
i
=
from
,
j
=
0
;
i
<
to
;
i
+=
step
,
j
++)
{
temp
[
j
]
=
data
[
i
];
}
T
pivot
=
select
(
temp
,
0
,
count
-
1
,
count
/
2
);
return
pivot
;
}
/**
* Select the kth smallest element.
*
* @param data the array
* @param from the index of the first element
* @param to the index of the last element
* @param k which element to return
* @return the kth smallest element
*/
private
T
select
(
T
[]
data
,
int
from
,
int
to
,
int
k
)
{
while
(
true
)
{
int
pivotIndex
=
(
to
+
from
)
>>>
1
;
int
pivotNewIndex
=
selectPartition
(
data
,
from
,
to
,
pivotIndex
);
int
pivotDist
=
pivotNewIndex
-
from
+
1
;
if
(
pivotDist
==
k
)
{
return
data
[
pivotNewIndex
];
}
else
if
(
k
<
pivotDist
)
{
to
=
pivotNewIndex
-
1
;
}
else
{
k
=
k
-
pivotDist
;
from
=
pivotNewIndex
+
1
;
}
}
}
/**
* Partition the elements to select the kth element.
*
* @param data the array
* @param from the index of the first element
* @param to the index of the last element
* @param pivotIndex the index of the pivot
* @return the new index
*/
private
int
selectPartition
(
T
[]
data
,
int
from
,
int
to
,
int
pivotIndex
)
{
T
pivotValue
=
data
[
pivotIndex
];
swap
(
data
,
pivotIndex
,
to
);
int
storeIndex
=
from
;
for
(
int
i
=
from
;
i
<=
to
;
i
++)
{
if
(
comp
.
compare
(
data
[
i
],
pivotValue
)
<
0
)
{
swap
(
data
,
storeIndex
,
i
);
storeIndex
++;
}
}
swap
(
data
,
to
,
storeIndex
);
return
storeIndex
;
}
/**
* Swap two elements in the array.
*
* @param data the array
* @param a the index of the first element
* @param b the index of the second element
*/
private
void
swap
(
T
[]
data
,
int
a
,
int
b
)
{
T
temp
=
data
[
a
];
data
[
a
]
=
data
[
b
];
data
[
b
]
=
temp
;
}
}
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论