Skip to content
项目
群组
代码片段
帮助
正在加载...
帮助
为 GitLab 提交贡献
登录/注册
切换导航
H
h2database
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
分枝图
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
计划
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
分枝图
统计图
创建新议题
作业
提交
议题看板
打开侧边栏
Administrator
h2database
Commits
7a2fba10
提交
7a2fba10
authored
11 年前
作者:
Thomas Mueller
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Change order for checkstyle.
上级
d70793f2
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
50 行增加
和
48 行删除
+50
-48
QueryStatisticsData.java
h2/src/main/org/h2/engine/QueryStatisticsData.java
+50
-48
没有找到文件。
h2/src/main/org/h2/engine/QueryStatisticsData.java
浏览文件 @
7a2fba10
...
...
@@ -21,40 +21,24 @@ import java.util.Map;
public
class
QueryStatisticsData
{
private
static
final
int
MAX_QUERY_ENTRIES
=
100
;
public
static
final
class
QueryEntry
{
public
String
sqlStatement
;
public
long
lastUpdateTime
;
public
int
count
;
public
long
executionTimeMin
;
public
long
executionTimeMax
;
public
long
executionTimeCumulative
;
public
int
rowCountMin
;
public
int
rowCountMax
;
public
long
rowCountCumulative
;
// Using Welford's method, see also
// http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
// http://www.johndcook.com/standard_deviation.html
public
double
executionTimeMean
;
public
double
executionTimeM2
;
public
double
rowCountMean
;
public
double
rowCountM2
;
public
double
getExecutionTimeStandardDeviation
()
{
// population standard deviation
return
Math
.
sqrt
(
executionTimeM2
/
count
);
}
public
double
getRowCountStandardDeviation
()
{
// population standard deviation
return
Math
.
sqrt
(
rowCountM2
/
count
);
private
static
final
Comparator
<
QueryEntry
>
QUERY_ENTRY_COMPARATOR
=
new
Comparator
<
QueryEntry
>()
{
@Override
public
int
compare
(
QueryEntry
o1
,
QueryEntry
o2
)
{
return
(
int
)
Math
.
signum
(
o1
.
lastUpdateTime
-
o2
.
lastUpdateTime
);
}
}
};
private
final
HashMap
<
String
,
QueryEntry
>
map
=
new
HashMap
<
String
,
QueryEntry
>();
public
synchronized
List
<
QueryEntry
>
getQueries
()
{
// return a copy of the map so we don't have to worry about external synchronization
ArrayList
<
QueryEntry
>
list
=
new
ArrayList
<
QueryEntry
>();
list
.
addAll
(
map
.
values
());
// only return the newest 100 entries
Collections
.
sort
(
list
,
QUERY_ENTRY_COMPARATOR
);
return
list
.
subList
(
0
,
Math
.
min
(
list
.
size
(),
MAX_QUERY_ENTRIES
));
}
/**
* Update query statistics.
...
...
@@ -68,15 +52,12 @@ public class QueryStatisticsData {
if
(
entry
==
null
)
{
entry
=
new
QueryEntry
();
entry
.
sqlStatement
=
sqlStatement
;
entry
.
count
=
1
;
entry
.
executionTimeMin
=
executionTime
;
entry
.
executionTimeMax
=
executionTime
;
entry
.
rowCountMin
=
rowCount
;
entry
.
rowCountMax
=
rowCount
;
entry
.
executionTimeMean
=
executionTime
;
entry
.
executionTimeM2
=
0
;
entry
.
rowCountMean
=
rowCount
;
entry
.
rowCountM2
=
0
;
map
.
put
(
sqlStatement
,
entry
);
}
else
{
entry
.
count
++;
...
...
@@ -117,19 +98,40 @@ public class QueryStatisticsData {
}
}
public
synchronized
List
<
QueryEntry
>
getQueries
()
{
// return a copy of the map so we don't have to worry about external synchronization
ArrayList
<
QueryEntry
>
list
=
new
ArrayList
<
QueryEntry
>();
list
.
addAll
(
map
.
values
());
// only return the newest 100 entries
Collections
.
sort
(
list
,
QUERY_ENTRY_COMPARATOR
);
return
list
.
subList
(
0
,
Math
.
min
(
list
.
size
(),
MAX_QUERY_ENTRIES
));
}
/**
* The collected statistics for one query.
*/
public
static
final
class
QueryEntry
{
public
String
sqlStatement
;
private
static
final
Comparator
<
QueryEntry
>
QUERY_ENTRY_COMPARATOR
=
new
Comparator
<
QueryEntry
>()
{
@Override
public
int
compare
(
QueryEntry
o1
,
QueryEntry
o2
)
{
return
(
int
)
Math
.
signum
(
o1
.
lastUpdateTime
-
o2
.
lastUpdateTime
);
public
int
count
=
1
;
public
long
lastUpdateTime
;
public
long
executionTimeMin
;
public
long
executionTimeMax
;
public
long
executionTimeCumulative
;
public
int
rowCountMin
;
public
int
rowCountMax
;
public
long
rowCountCumulative
;
// Using Welford's method, see also
// http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
// http://www.johndcook.com/standard_deviation.html
public
double
executionTimeMean
;
public
double
executionTimeM2
;
public
double
rowCountMean
;
public
double
rowCountM2
;
public
double
getExecutionTimeStandardDeviation
()
{
// population standard deviation
return
Math
.
sqrt
(
executionTimeM2
/
count
);
}
};
public
double
getRowCountStandardDeviation
()
{
// population standard deviation
return
Math
.
sqrt
(
rowCountM2
/
count
);
}
}
}
This diff is collapsed.
Click to expand it.
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论