Skip to content
项目
群组
代码片段
帮助
正在加载...
帮助
为 GitLab 提交贡献
登录/注册
切换导航
H
h2database
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
分枝图
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
计划
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
分枝图
统计图
创建新议题
作业
提交
议题看板
打开侧边栏
Administrator
h2database
Commits
c364baf4
提交
c364baf4
authored
8月 27, 2014
作者:
Thomas Mueller
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
A minimal perfect hash function tool
上级
4300469b
隐藏空白字符变更
内嵌
并排
正在显示
3 个修改的文件
包含
521 行增加
和
30 行删除
+521
-30
TestPerfectHash.java
h2/src/test/org/h2/test/unit/TestPerfectHash.java
+59
-6
MinimalPerfectHash.java
h2/src/tools/org/h2/dev/hash/MinimalPerfectHash.java
+437
-0
PerfectHash.java
h2/src/tools/org/h2/dev/hash/PerfectHash.java
+25
-24
没有找到文件。
h2/src/test/org/h2/test/unit/TestPerfectHash.java
浏览文件 @
c364baf4
...
...
@@ -9,6 +9,7 @@ import java.util.HashSet;
import
java.util.Random
;
import
java.util.Set
;
import
org.h2.dev.hash.MinimalPerfectHash
;
import
org.h2.dev.hash.PerfectHash
;
import
org.h2.test.TestBase
;
...
...
@@ -23,22 +24,45 @@ public class TestPerfectHash extends TestBase {
* @param a ignored
*/
public
static
void
main
(
String
...
a
)
throws
Exception
{
TestBase
.
createCaller
().
init
().
test
();
TestPerfectHash
test
=
(
TestPerfectHash
)
TestBase
.
createCaller
().
init
();
test
.
test
();
test
.
measure
();
}
/**
* Measure the hash functions.
*/
public
void
measure
()
{
int
size
=
1000000
;
int
s
=
testMinimal
(
size
);
System
.
out
.
println
((
double
)
s
/
size
+
" bits/key (minimal)"
);
s
=
test
(
size
,
true
);
System
.
out
.
println
((
double
)
s
/
size
+
" bits/key (minimal old)"
);
s
=
test
(
size
,
false
);
System
.
out
.
println
((
double
)
s
/
size
+
" bits/key (not minimal)"
);
}
@Override
public
void
test
()
{
for
(
int
i
=
0
;
i
<
1000
;
i
++)
{
for
(
int
i
=
0
;
i
<
100
;
i
++)
{
testMinimal
(
i
);
}
for
(
int
i
=
100
;
i
<=
100000
;
i
*=
10
)
{
testMinimal
(
i
);
}
for
(
int
i
=
0
;
i
<
100
;
i
++)
{
test
(
i
,
true
);
test
(
i
,
false
);
}
for
(
int
i
=
100
0
;
i
<=
100000
;
i
*=
10
)
{
for
(
int
i
=
100
;
i
<=
100000
;
i
*=
10
)
{
test
(
i
,
true
);
test
(
i
,
false
);
}
}
void
test
(
int
size
,
boolean
minimal
)
{
private
int
test
(
int
size
,
boolean
minimal
)
{
Random
r
=
new
Random
(
size
);
HashSet
<
Integer
>
set
=
new
HashSet
<
Integer
>();
while
(
set
.
size
()
<
size
)
{
...
...
@@ -53,9 +77,10 @@ public class TestPerfectHash extends TestBase {
assertTrue
(
max
<
1.5
*
size
);
}
}
return
desc
.
length
*
8
;
}
int
test
(
byte
[]
desc
,
Set
<
Integer
>
set
)
{
private
int
test
(
byte
[]
desc
,
Set
<
Integer
>
set
)
{
int
max
=
-
1
;
HashSet
<
Integer
>
test
=
new
HashSet
<
Integer
>();
PerfectHash
hash
=
new
PerfectHash
(
desc
);
...
...
@@ -69,4 +94,32 @@ public class TestPerfectHash extends TestBase {
}
return
max
;
}
private
int
testMinimal
(
int
size
)
{
Random
r
=
new
Random
(
size
);
HashSet
<
Integer
>
set
=
new
HashSet
<
Integer
>();
while
(
set
.
size
()
<
size
)
{
set
.
add
(
r
.
nextInt
());
}
byte
[]
desc
=
MinimalPerfectHash
.
generate
(
set
);
int
max
=
testMinimal
(
desc
,
set
);
assertEquals
(
size
-
1
,
max
);
return
desc
.
length
*
8
;
}
private
int
testMinimal
(
byte
[]
desc
,
Set
<
Integer
>
set
)
{
int
max
=
-
1
;
HashSet
<
Integer
>
test
=
new
HashSet
<
Integer
>();
MinimalPerfectHash
hash
=
new
MinimalPerfectHash
(
desc
);
for
(
int
x
:
set
)
{
int
h
=
hash
.
get
(
x
);
assertTrue
(
h
>=
0
);
assertTrue
(
h
<=
set
.
size
()
*
3
);
max
=
Math
.
max
(
max
,
h
);
assertFalse
(
test
.
contains
(
h
));
test
.
add
(
h
);
}
return
max
;
}
}
h2/src/tools/org/h2/dev/hash/MinimalPerfectHash.java
0 → 100644
浏览文件 @
c364baf4
/*
* Copyright 2004-2014 H2 Group. Multiple-Licensed under the MPL 2.0,
* and the EPL 1.0 (http://h2database.com/html/license.html).
* Initial Developer: H2 Group
*/
package
org
.
h2
.
dev
.
hash
;
import
java.io.ByteArrayOutputStream
;
import
java.io.IOException
;
import
java.util.ArrayList
;
import
java.util.Set
;
import
java.util.zip.Deflater
;
import
java.util.zip.Inflater
;
/**
* A minimal perfect hash function tool. It needs about 2.0 bits per key.
* <p>
* Generating the hash function takes about 2.5 second per million keys with 8
* cores (multithreaded).
* <p>
* The algorithm is recursive: sets that contain no or only one entry are not
* processed as no conflicts are possible. Sets that contain between 2 and 12
* entries, a number of hash functions are tested to check if they can store the
* data without conflict. If no function was found, and for larger sets, the set
* is split into a (possibly high) number of smaller set, which are processed
* recursively.
* <p>
* At the end of the generation process, the data is compressed using a general
* purpose compression tool (Deflate / Huffman coding). The uncompressed data is
* around 2.2 bits per key. With arithmetic coding, about 1.9 bits per key are
* needed.
* <p>
* The algorithm automatically scales with the number of available CPUs (using
* as many threads as there are processors).
* <p>
* At the expense of processing time, a lower number of bits per key would be
* possible (for example 1.85 bits per key with 33000 keys, using 10 seconds
* generation time, with Huffman coding).
* <p>
* In-place updating of the hash table is possible in theory, by patching the
* hash function description. This is not implemented.
*/
public
class
MinimalPerfectHash
{
/**
* Large buckets are typically divided into buckets of this size.
*/
private
static
final
int
DIVIDE
=
6
;
/**
* The maximum size of a small bucket (one that is not further split if
* possible).
*/
private
static
final
int
MAX_SIZE
=
12
;
/**
* The maximum offset for hash functions of small buckets. At most that many
* hash functions are tried for the given size.
*/
private
static
final
int
[]
MAX_OFFSETS
=
{
0
,
0
,
8
,
18
,
47
,
123
,
319
,
831
,
2162
,
5622
,
14617
,
38006
,
38006
};
/**
* The output value to split the bucket into many (more than 2) smaller
* buckets.
*/
private
static
final
int
SPLIT_MANY
=
3
;
/**
* The minimum output value for a small bucket of a given size.
*/
private
static
final
int
[]
SIZE_OFFSETS
=
new
int
[
MAX_OFFSETS
.
length
+
1
];
static
{
int
last
=
SPLIT_MANY
+
1
;
for
(
int
i
=
0
;
i
<
MAX_OFFSETS
.
length
;
i
++)
{
SIZE_OFFSETS
[
i
]
=
last
;
last
+=
MAX_OFFSETS
[
i
];
}
SIZE_OFFSETS
[
SIZE_OFFSETS
.
length
-
1
]
=
last
;
}
/**
* The description of the hash function. Used for calculating the hash of a
* key.
*/
private
final
byte
[]
data
;
/**
* The offset of the result of the hash function at the given offset within
* the data array. Used for calculating the hash of a key.
*/
private
final
int
[]
plus
;
/**
* The position of the given top-level bucket in the data array (in case
* this bucket needs to be skipped). Used for calculating the hash of a key.
*/
private
final
int
[]
topPos
;
/**
* Create a hash object to convert keys to hashes.
*
* @param desc the data returned by the generate method
*/
public
MinimalPerfectHash
(
byte
[]
desc
)
{
byte
[]
b
=
data
=
expand
(
desc
);
plus
=
new
int
[
data
.
length
];
for
(
int
pos
=
0
,
p
=
0
;
pos
<
data
.
length
;)
{
plus
[
pos
]
=
p
;
int
n
=
readVarInt
(
b
,
pos
);
pos
+=
getVarIntLength
(
b
,
pos
);
if
(
n
<
2
)
{
p
+=
n
;
}
else
if
(
n
>
SPLIT_MANY
)
{
int
size
=
getSize
(
n
);
p
+=
size
;
}
else
if
(
n
==
SPLIT_MANY
)
{
pos
+=
getVarIntLength
(
b
,
pos
);
}
}
if
(
b
[
0
]
==
SPLIT_MANY
)
{
int
split
=
readVarInt
(
b
,
1
);
topPos
=
new
int
[
split
];
int
pos
=
1
+
getVarIntLength
(
b
,
1
);
for
(
int
i
=
0
;
i
<
split
;
i
++)
{
topPos
[
i
]
=
pos
;
pos
=
read
(
pos
);
}
}
else
{
topPos
=
null
;
}
}
/**
* Calculate the hash from the key.
*
* @param x the key
* @return the hash
*/
public
int
get
(
int
x
)
{
return
get
(
0
,
x
,
0
);
}
private
int
get
(
int
pos
,
int
x
,
int
level
)
{
int
n
=
readVarInt
(
data
,
pos
);
if
(
n
<
2
)
{
return
plus
[
pos
];
}
else
if
(
n
>
SPLIT_MANY
)
{
int
size
=
getSize
(
n
);
int
offset
=
getOffset
(
n
,
size
);
return
plus
[
pos
]
+
hash
(
x
,
level
,
offset
,
size
);
}
pos
++;
int
split
;
if
(
n
==
SPLIT_MANY
)
{
split
=
readVarInt
(
data
,
pos
);
pos
+=
getVarIntLength
(
data
,
pos
);
}
else
{
split
=
n
;
}
int
h
=
hash
(
x
,
level
,
0
,
split
);
if
(
level
==
0
&&
topPos
!=
null
)
{
pos
=
topPos
[
h
];
}
else
{
for
(
int
i
=
0
;
i
<
h
;
i
++)
{
pos
=
read
(
pos
);
}
}
return
get
(
pos
,
x
,
level
+
1
);
}
private
static
void
writeSizeOffset
(
ByteArrayOutputStream
out
,
int
size
,
int
offset
)
{
writeVarInt
(
out
,
SIZE_OFFSETS
[
size
]
+
offset
);
}
private
static
int
getOffset
(
int
n
,
int
size
)
{
return
n
-
SIZE_OFFSETS
[
size
];
}
private
static
int
getSize
(
int
n
)
{
for
(
int
i
=
0
;
i
<
SIZE_OFFSETS
.
length
;
i
++)
{
if
(
n
<
SIZE_OFFSETS
[
i
])
{
return
i
-
1
;
}
}
return
0
;
}
private
int
read
(
int
pos
)
{
int
n
=
readVarInt
(
data
,
pos
);
pos
+=
getVarIntLength
(
data
,
pos
);
if
(
n
<
2
||
n
>
SPLIT_MANY
)
{
return
pos
;
}
int
split
;
if
(
n
==
SPLIT_MANY
)
{
split
=
readVarInt
(
data
,
pos
);
pos
+=
getVarIntLength
(
data
,
pos
);
}
else
{
split
=
n
;
}
for
(
int
i
=
0
;
i
<
split
;
i
++)
{
pos
=
read
(
pos
);
}
return
pos
;
}
/**
* Generate the minimal perfect hash function data from the given set of
* integers.
*
* @param set the data
* @return the hash function description
*/
public
static
byte
[]
generate
(
Set
<
Integer
>
set
)
{
ArrayList
<
Integer
>
list
=
new
ArrayList
<
Integer
>();
list
.
addAll
(
set
);
ByteArrayOutputStream
out
=
new
ByteArrayOutputStream
();
generate
(
list
,
0
,
out
);
return
compress
(
out
.
toByteArray
());
}
/**
* Generate the perfect hash function data from the given set of integers.
*
* @param list the data, in the form of a list
* @param level the recursion level
* @param out the output stream
*/
static
void
generate
(
ArrayList
<
Integer
>
list
,
int
level
,
ByteArrayOutputStream
out
)
{
int
size
=
list
.
size
();
if
(
size
<=
1
)
{
writeVarInt
(
out
,
size
);
return
;
}
if
(
size
<=
MAX_SIZE
)
{
int
maxOffset
=
MAX_OFFSETS
[
size
];
nextOffset:
for
(
int
offset
=
0
;
offset
<
maxOffset
;
offset
++)
{
int
bits
=
0
;
for
(
int
i
=
0
;
i
<
size
;
i
++)
{
int
x
=
list
.
get
(
i
);
int
h
=
hash
(
x
,
level
,
offset
,
size
);
if
((
bits
&
(
1
<<
h
))
!=
0
)
{
continue
nextOffset
;
}
bits
|=
1
<<
h
;
}
writeSizeOffset
(
out
,
size
,
offset
);
return
;
}
}
int
split
;
if
(
size
>
57
*
DIVIDE
)
{
split
=
size
/
(
36
*
DIVIDE
);
}
else
{
split
=
(
size
-
47
)
/
DIVIDE
;
}
split
=
Math
.
max
(
2
,
split
);
if
(
split
>=
SPLIT_MANY
)
{
writeVarInt
(
out
,
SPLIT_MANY
);
}
writeVarInt
(
out
,
split
);
ArrayList
<
ArrayList
<
Integer
>>
lists
=
new
ArrayList
<
ArrayList
<
Integer
>>(
split
);
for
(
int
i
=
0
;
i
<
split
;
i
++)
{
lists
.
add
(
new
ArrayList
<
Integer
>(
size
/
split
));
}
for
(
int
i
=
0
;
i
<
size
;
i
++)
{
int
x
=
list
.
get
(
i
);
lists
.
get
(
hash
(
x
,
level
,
0
,
split
)).
add
(
x
);
}
boolean
multiThreaded
=
level
==
0
&&
list
.
size
()
>
1000
;
list
.
clear
();
list
.
trimToSize
();
if
(
multiThreaded
)
{
generateMultiThreaded
(
lists
,
out
);
}
else
{
for
(
ArrayList
<
Integer
>
s2
:
lists
)
{
generate
(
s2
,
level
+
1
,
out
);
}
}
}
private
static
void
generateMultiThreaded
(
final
ArrayList
<
ArrayList
<
Integer
>>
lists
,
ByteArrayOutputStream
out
)
{
final
ArrayList
<
ByteArrayOutputStream
>
outList
=
new
ArrayList
<
ByteArrayOutputStream
>();
int
processors
=
Runtime
.
getRuntime
().
availableProcessors
();
Thread
[]
threads
=
new
Thread
[
processors
];
for
(
int
i
=
0
;
i
<
processors
;
i
++)
{
threads
[
i
]
=
new
Thread
()
{
@Override
public
void
run
()
{
while
(
true
)
{
ArrayList
<
Integer
>
list
;
ByteArrayOutputStream
temp
=
new
ByteArrayOutputStream
();
synchronized
(
lists
)
{
if
(
lists
.
isEmpty
())
{
break
;
}
list
=
lists
.
remove
(
0
);
outList
.
add
(
temp
);
}
generate
(
list
,
1
,
temp
);
}
}
};
}
for
(
Thread
t
:
threads
)
{
t
.
start
();
}
try
{
for
(
Thread
t
:
threads
)
{
t
.
join
();
}
for
(
ByteArrayOutputStream
temp
:
outList
)
{
out
.
write
(
temp
.
toByteArray
());
}
}
catch
(
InterruptedException
e
)
{
throw
new
RuntimeException
(
e
);
}
catch
(
IOException
e
)
{
throw
new
RuntimeException
(
e
);
}
}
/**
* Calculate the hash of a key. The result depends on the key, the recursion
* level, and the offset.
*
* @param x the key
* @param level the recursion level
* @param offset the index of the hash function
* @param size the size of the bucket
* @return the hash (a value between 0, including, and the size, excluding)
*/
private
static
int
hash
(
int
x
,
int
level
,
int
offset
,
int
size
)
{
x
+=
level
*
16
+
offset
;
x
=
((
x
>>>
16
)
^
x
)
*
0x45d9f3b
;
x
=
((
x
>>>
16
)
^
x
)
*
0x45d9f3b
;
x
=
(
x
>>>
16
)
^
x
;
return
Math
.
abs
(
x
%
size
);
}
private
static
int
writeVarInt
(
ByteArrayOutputStream
out
,
int
x
)
{
int
len
=
0
;
while
((
x
&
~
0x7f
)
!=
0
)
{
out
.
write
((
byte
)
(
0x80
|
(
x
&
0x7f
)));
x
>>>=
7
;
len
++;
}
out
.
write
((
byte
)
x
);
return
++
len
;
}
private
static
int
readVarInt
(
byte
[]
d
,
int
pos
)
{
int
x
=
d
[
pos
++];
if
(
x
>=
0
)
{
return
x
;
}
x
&=
0x7f
;
for
(
int
s
=
7
;
s
<
64
;
s
+=
7
)
{
int
b
=
d
[
pos
++];
x
|=
(
b
&
0x7f
)
<<
s
;
if
(
b
>=
0
)
{
break
;
}
}
return
x
;
}
private
static
int
getVarIntLength
(
byte
[]
d
,
int
pos
)
{
int
x
=
d
[
pos
++];
if
(
x
>=
0
)
{
return
1
;
}
int
len
=
2
;
for
(
int
s
=
7
;
s
<
64
;
s
+=
7
)
{
int
b
=
d
[
pos
++];
if
(
b
>=
0
)
{
break
;
}
len
++;
}
return
len
;
}
/**
* Compress the hash description using a Huffman coding.
*
* @param d the data
* @return the compressed data
*/
private
static
byte
[]
compress
(
byte
[]
d
)
{
Deflater
deflater
=
new
Deflater
();
deflater
.
setStrategy
(
Deflater
.
HUFFMAN_ONLY
);
deflater
.
setInput
(
d
);
deflater
.
finish
();
ByteArrayOutputStream
out2
=
new
ByteArrayOutputStream
(
d
.
length
);
byte
[]
buffer
=
new
byte
[
1024
];
while
(!
deflater
.
finished
())
{
int
count
=
deflater
.
deflate
(
buffer
);
out2
.
write
(
buffer
,
0
,
count
);
}
deflater
.
end
();
return
out2
.
toByteArray
();
}
/**
* Decompress the hash description using a Huffman coding.
*
* @param d the data
* @return the decompressed data
*/
private
static
byte
[]
expand
(
byte
[]
d
)
{
Inflater
inflater
=
new
Inflater
();
inflater
.
setInput
(
d
);
ByteArrayOutputStream
out
=
new
ByteArrayOutputStream
(
d
.
length
);
byte
[]
buffer
=
new
byte
[
1024
];
try
{
while
(!
inflater
.
finished
())
{
int
count
=
inflater
.
inflate
(
buffer
);
out
.
write
(
buffer
,
0
,
count
);
}
inflater
.
end
();
}
catch
(
Exception
e
)
{
throw
new
IllegalArgumentException
(
e
);
}
return
out
.
toByteArray
();
}
}
h2/src/tools/org/h2/dev/hash/PerfectHash.java
浏览文件 @
c364baf4
...
...
@@ -18,12 +18,12 @@ import java.util.zip.Inflater;
* resulting hash table is about 79% full. The minimal perfect hash function
* needs about 2.3 bits per key.
* <p>
* Generating the hash function takes about 1 second per million keys
(linear)
* Generating the hash function takes about 1 second per million keys
* for both perfect hash and minimal perfect hash.
* <p>
* The algorithm is recursive: sets that contain no or only one entry are not
* processed as no conflicts are possible. Sets that contain between 2 and 16
*
bucket
s, up to 16 hash functions are tested to check if they can store the
*
entrie
s, up to 16 hash functions are tested to check if they can store the
* data without conflict. If no function was found, the same is tested on a
* larger bucket (except for the minimal perfect hash). If no hash function was
* found, and for larger buckets, the bucket is split into a number of smaller
...
...
@@ -32,7 +32,8 @@ import java.util.zip.Inflater;
* At the end of the generation process, the data is compressed using a general
* purpose compression tool (Deflate / Huffman coding). The uncompressed data is
* around 1.52 bits per key (perfect hash) and 3.72 (minimal perfect hash).
*
* <p>
* Please also note the MinimalPerfectHash class, which uses less space per key.
*/
public
class
PerfectHash
{
...
...
@@ -40,12 +41,12 @@ public class PerfectHash {
* The maximum size of a bucket.
*/
private
static
final
int
MAX_SIZE
=
16
;
/**
* The maximum number of hash functions to test.
*/
private
static
final
int
OFFSETS
=
16
;
/**
* The maximum number of buckets to split the set into.
*/
...
...
@@ -56,13 +57,13 @@ public class PerfectHash {
* key.
*/
private
final
byte
[]
data
;
/**
* The offset of the result of the hash function at the given offset within
* the data array. Used for calculating the hash of a key.
*/
private
final
int
[]
plus
;
/**
* The position of the next bucket in the data array (in case this bucket
* needs to be skipped). Used for calculating the hash of a key.
...
...
@@ -71,7 +72,7 @@ public class PerfectHash {
/**
* Create a hash object to convert keys to hashes.
*
*
* @param data the data returned by the generate method
*/
public
PerfectHash
(
byte
[]
data
)
{
...
...
@@ -87,7 +88,7 @@ public class PerfectHash {
/**
* Calculate the hash from the key.
*
*
* @param x the key
* @return the hash
*/
...
...
@@ -128,7 +129,7 @@ public class PerfectHash {
/**
* Generate the perfect hash function data from the given set of integers.
*
*
* @param list the set
* @param minimal whether the perfect hash function needs to be minimal
* @return the data
...
...
@@ -139,7 +140,7 @@ public class PerfectHash {
return
compress
(
out
.
toByteArray
());
}
private
static
void
generate
(
Collection
<
Integer
>
set
,
int
level
,
private
static
void
generate
(
Collection
<
Integer
>
set
,
int
level
,
boolean
minimal
,
ByteArrayOutputStream
out
)
{
int
size
=
set
.
size
();
if
(
size
<=
1
)
{
...
...
@@ -195,7 +196,7 @@ public class PerfectHash {
/**
* Calculate the hash of a key. The result depends on the key, the recursion
* level, and the offset.
*
*
* @param x the key
* @param level the recursion level
* @param offset the index of the hash function
...
...
@@ -209,10 +210,10 @@ public class PerfectHash {
x
=
(
x
>>>
16
)
^
x
;
return
Math
.
abs
(
x
%
size
);
}
/**
* Compress the hash description using a Huffman coding.
*
*
* @param d the data
* @return the compressed data
*/
...
...
@@ -230,28 +231,28 @@ public class PerfectHash {
deflater
.
end
();
return
out2
.
toByteArray
();
}
/**
* Decompress the hash description using a Huffman coding.
*
*
* @param d the data
* @return the decompressed data
*/
private
static
byte
[]
expand
(
byte
[]
d
)
{
Inflater
inflater
=
new
Inflater
();
inflater
.
setInput
(
d
);
ByteArrayOutputStream
out
=
new
ByteArrayOutputStream
(
d
.
length
);
byte
[]
buffer
=
new
byte
[
1024
];
Inflater
inflater
=
new
Inflater
();
inflater
.
setInput
(
d
);
ByteArrayOutputStream
out
=
new
ByteArrayOutputStream
(
d
.
length
);
byte
[]
buffer
=
new
byte
[
1024
];
try
{
while
(!
inflater
.
finished
())
{
while
(!
inflater
.
finished
())
{
int
count
=
inflater
.
inflate
(
buffer
);
out
.
write
(
buffer
,
0
,
count
);
out
.
write
(
buffer
,
0
,
count
);
}
inflater
.
end
();
}
catch
(
Exception
e
)
{
throw
new
IllegalArgumentException
(
e
);
}
return
out
.
toByteArray
();
}
return
out
.
toByteArray
();
}
}
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论