Skip to content
项目
群组
代码片段
帮助
正在加载...
帮助
为 GitLab 提交贡献
登录/注册
切换导航
H
h2database
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
分枝图
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
计划
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
分枝图
统计图
创建新议题
作业
提交
议题看板
打开侧边栏
Administrator
h2database
Commits
f4e7837e
提交
f4e7837e
authored
10月 14, 2012
作者:
Thomas Mueller
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
LIRS cache: concurrent
上级
cf6fb26c
隐藏空白字符变更
内嵌
并排
正在显示
3 个修改的文件
包含
982 行增加
和
1 行删除
+982
-1
Task.java
h2/src/main/org/h2/util/Task.java
+11
-1
TestCacheConcurrentLIRS.java
h2/src/test/org/h2/test/store/TestCacheConcurrentLIRS.java
+81
-0
CacheConcurrentLIRS.java
h2/src/tools/org/h2/dev/store/btree/CacheConcurrentLIRS.java
+890
-0
没有找到文件。
h2/src/main/org/h2/util/Task.java
浏览文件 @
f4e7837e
...
@@ -47,7 +47,17 @@ public abstract class Task implements Runnable {
...
@@ -47,7 +47,17 @@ public abstract class Task implements Runnable {
* @return this
* @return this
*/
*/
public
Task
execute
()
{
public
Task
execute
()
{
thread
=
new
Thread
(
this
,
getClass
().
getName
());
return
execute
(
getClass
().
getName
());
}
/**
* Start the thread.
*
* @param threadName the name of the thread
* @return this
*/
public
Task
execute
(
String
threadName
)
{
thread
=
new
Thread
(
this
,
threadName
);
thread
.
setDaemon
(
true
);
thread
.
setDaemon
(
true
);
thread
.
start
();
thread
.
start
();
return
this
;
return
this
;
...
...
h2/src/test/org/h2/test/store/TestCacheConcurrentLIRS.java
0 → 100644
浏览文件 @
f4e7837e
/*
* Copyright 2004-2011 H2 Group. Multiple-Licensed under the H2 License, Version
* 1.0, and under the Eclipse Public License, Version 1.0
* (http://h2database.com/html/license.html). Initial Developer: H2 Group
*/
package
org
.
h2
.
test
.
store
;
import
java.util.Random
;
import
java.util.concurrent.CountDownLatch
;
import
java.util.concurrent.atomic.AtomicBoolean
;
import
org.h2.dev.store.btree.CacheConcurrentLIRS
;
import
org.h2.test.TestBase
;
import
org.h2.util.Task
;
/**
* Tests the cache algorithm.
*/
public
class
TestCacheConcurrentLIRS
extends
TestBase
{
/**
* Run just this test.
*
* @param a ignored
*/
public
static
void
main
(
String
...
a
)
throws
Exception
{
TestBase
.
createCaller
().
init
().
test
();
}
public
void
test
()
throws
Exception
{
testConcurrent
();
}
private
static
void
testConcurrent
()
{
final
CacheConcurrentLIRS
<
Integer
,
Integer
>
test
=
CacheConcurrentLIRS
.
newInstance
(
100
,
1
);
int
threadCount
=
8
;
final
CountDownLatch
wait
=
new
CountDownLatch
(
1
);
final
AtomicBoolean
stopped
=
new
AtomicBoolean
();
Task
[]
tasks
=
new
Task
[
threadCount
];
final
int
[]
getCounts
=
new
int
[
threadCount
];
for
(
int
i
=
0
;
i
<
threadCount
;
i
++)
{
final
int
x
=
i
;
Task
t
=
new
Task
()
{
@Override
public
void
call
()
throws
Exception
{
Random
random
=
new
Random
(
x
);
wait
.
await
();
int
i
=
0
;
for
(;
!
stopped
.
get
();
i
++)
{
int
key
;
do
{
key
=
(
int
)
Math
.
abs
(
random
.
nextGaussian
()
*
50
);
}
while
(
key
>
100
);
test
.
get
(
key
);
if
((
i
&
127
)
==
0
)
{
test
.
put
(
random
.
nextInt
(
100
),
random
.
nextInt
());
}
}
getCounts
[
x
]
=
i
;
}
};
t
.
execute
(
"t"
+
i
);
tasks
[
i
]
=
t
;
}
wait
.
countDown
();
try
{
Thread
.
sleep
(
2000
);
}
catch
(
InterruptedException
e
)
{
e
.
printStackTrace
();
}
stopped
.
set
(
true
);
for
(
Task
t
:
tasks
)
{
t
.
get
();
}
int
totalCount
=
0
;
for
(
int
x
:
getCounts
)
{
totalCount
+=
x
;
}
System
.
out
.
println
(
"requests: "
+
totalCount
);
}
}
h2/src/tools/org/h2/dev/store/btree/CacheConcurrentLIRS.java
0 → 100644
浏览文件 @
f4e7837e
/*
* Copyright 2004-2011 H2 Group. Multiple-Licensed under the H2 License,
* Version 1.0, and under the Eclipse Public License, Version 1.0
* (http://h2database.com/html/license.html).
* Initial Developer: H2 Group
*/
package
org
.
h2
.
dev
.
store
.
btree
;
import
java.util.AbstractMap
;
import
java.util.ArrayList
;
import
java.util.HashMap
;
import
java.util.HashSet
;
import
java.util.List
;
import
java.util.Map
;
import
java.util.Set
;
/**
* A scan resistant cache. It is meant to cache objects that are relatively
* costly to acquire, for example file content.
* <p>
* This implementation is multi-threading save and supports concurrent access.
* Null keys or null values are not allowed. The map fill factor is at most 75%.
* <p>
* Each entry is assigned a distinct memory size, and the cache will try to use
* at most the specified amount of memory. The memory unit is not relevant,
* however it is suggested to use bytes as the unit.
* <p>
* This class implements an approximation of the the LIRS replacement algorithm
* invented by Xiaodong Zhang and Song Jiang as described in
* http://www.cse.ohio-state.edu/~zhang/lirs-sigmetrics-02.html with a few
* smaller changes: An additional queue for non-resident entries is used, to
* prevent unbound memory usage. The maximum size of this queue is at most the
* size of the rest of the stack. About 6.25% of the mapped entries are cold.
* <p>
* Internally, the cache is split into 16 segments, and each segment is an
* individual LIRS cache. Accessed entries are only moved to the top of the
* stack if at least 20 other entries have been moved to the front. Write access
* and moving entries to the top of the stack is synchronized per segment.
*
* @author Thomas Mueller
* @param <K> the key type
* @param <V> the value type
*/
public
class
CacheConcurrentLIRS
<
K
,
V
>
extends
AbstractMap
<
K
,
V
>
implements
Map
<
K
,
V
>
{
/**
* The maximum memory this cache should use.
*/
private
long
maxMemory
;
/**
* The average memory used by one entry.
*/
private
int
averageMemory
;
private
Segment
<
K
,
V
>[]
segments
;
private
int
segmentShift
;
private
int
segmentMask
;
private
CacheConcurrentLIRS
(
long
maxMemory
,
int
averageMemory
)
{
this
.
maxMemory
=
maxMemory
;
this
.
averageMemory
=
averageMemory
;
clear
();
}
@SuppressWarnings
(
"unchecked"
)
public
void
clear
()
{
// must be a power of 2
int
count
=
16
;
segmentMask
=
count
-
1
;
segments
=
new
Segment
[
count
];
for
(
int
i
=
0
;
i
<
count
;
i
++)
{
segments
[
i
]
=
new
Segment
<
K
,
V
>(
1
+
maxMemory
/
count
,
averageMemory
);
}
segmentShift
=
Integer
.
numberOfTrailingZeros
(
segments
[
0
].
sizeMapArray
());
}
private
Entry
<
K
,
V
>
find
(
Object
key
)
{
int
hash
=
getHash
(
key
);
return
getSegment
(
hash
).
find
(
key
,
hash
);
}
/**
* Check whether there is a resident entry for the given key. This method
* does not adjusts the internal state of the cache.
*
* @param key the key (may not be null)
* @return true if there is a resident entry
*/
public
boolean
containsKey
(
Object
key
)
{
int
hash
=
getHash
(
key
);
return
getSegment
(
hash
).
containsKey
(
key
,
hash
);
}
/**
* Get the value for the given key if the entry is cached. This method does
* not modify the internal state.
*
* @param key the key (may not be null)
* @return the value, or null if there is no resident entry
*/
public
V
peek
(
K
key
)
{
Entry
<
K
,
V
>
e
=
find
(
key
);
return
e
==
null
?
null
:
e
.
value
;
}
/**
* Add an entry to the cache. The entry may or may not exist in the cache
* yet. This method will usually mark unknown entries as cold and known
* entries as hot.
*
* @param key the key (may not be null)
* @param value the value (may not be null)
* @param memory the memory used for the given entry
* @return the old value, or null if there is no resident entry
*/
public
V
put
(
K
key
,
V
value
,
int
memory
)
{
int
hash
=
getHash
(
key
);
return
getSegment
(
hash
).
put
(
key
,
value
,
hash
,
memory
);
}
/**
* Add an entry to the cache using the average memory size.
*
* @param key the key (may not be null)
* @param value the value (may not be null)
* @return the old value, or null if there is no resident entry
*/
public
V
put
(
K
key
,
V
value
)
{
return
put
(
key
,
value
,
averageMemory
);
}
/**
* Remove an entry. Both resident and non-resident entries can be removed.
*
* @param key the key (may not be null)
* @return the old value, or null if there is no resident entry
*/
public
synchronized
V
remove
(
Object
key
)
{
int
hash
=
getHash
(
key
);
return
getSegment
(
hash
).
remove
(
key
,
hash
);
}
/**
* Get the memory used for the given key.
*
* @param key the key (may not be null)
* @return the memory, or 0 if there is no resident entry
*/
public
int
getMemory
(
K
key
)
{
int
hash
=
getHash
(
key
);
return
getSegment
(
hash
).
getMemory
(
key
,
hash
);
}
/**
* Get the value for the given key if the entry is cached. This method
* adjusts the internal state of the cache, to ensure commonly used entries
* stay in the cache.
*
* @param key the key (may not be null)
* @return the value, or null if there is no resident entry
*/
public
V
get
(
Object
key
)
{
int
hash
=
getHash
(
key
);
return
getSegment
(
hash
).
get
(
key
,
hash
);
}
private
Segment
<
K
,
V
>
getSegment
(
int
hash
)
{
int
segmentIndex
=
(
hash
>>>
segmentShift
)
&
segmentMask
;
return
segments
[
segmentIndex
];
}
static
int
getHash
(
Object
key
)
{
int
hash
=
key
.
hashCode
();
// Doug Lea's supplemental secondaryHash function (inlined)
// to protect against hash codes that don't differ in low order bits
hash
^=
(
hash
>>>
20
)
^
(
hash
>>>
12
);
hash
^=
(
hash
>>>
7
)
^
(
hash
>>>
4
);
return
hash
;
}
/**
* Get the currently used memory.
*
* @return the used memory
*/
public
long
getUsedMemory
()
{
long
x
=
0
;
for
(
Segment
<
K
,
V
>
s
:
segments
)
{
x
+=
s
.
getUsedMemory
();
}
return
x
;
}
/**
* Set the maximum memory this cache should use. This will not immediately
* cause entries to get removed however; it will only change the limit. To
* resize the internal array, call the clear method.
*
* @param maxMemory the maximum size (1 or larger)
*/
public
void
setMaxMemory
(
long
maxMemory
)
{
if
(
maxMemory
<=
0
)
{
throw
new
IllegalArgumentException
(
"Max memory must be larger than 0"
);
}
this
.
maxMemory
=
maxMemory
;
for
(
Segment
<
K
,
V
>
s
:
segments
)
{
s
.
setMaxMemory
(
1
+
maxMemory
/
segments
.
length
);
}
}
/**
* Get the average memory used per entry.
*
* @return the average memory
*/
public
int
getAverageMemory
()
{
return
averageMemory
;
}
/**
* Get the maximum memory to use.
*
* @return the maximum memory
*/
public
long
getMaxMemory
()
{
return
maxMemory
;
}
/**
* Create a new cache with the given memory size. To just limit the number
* of entries, use the required number as the maximum memory, and an average
* size of 1.
*
* @param maxMemory the maximum memory to use (1 or larger)
* @param averageMemory the average memory (1 or larger)
* @return the cache
*/
public
static
<
K
,
V
>
CacheConcurrentLIRS
<
K
,
V
>
newInstance
(
int
maxMemory
,
int
averageMemory
)
{
return
new
CacheConcurrentLIRS
<
K
,
V
>(
maxMemory
,
averageMemory
);
}
/**
* Get the entry set for all resident entries.
*
* @return the entry set
*/
public
synchronized
Set
<
Map
.
Entry
<
K
,
V
>>
entrySet
()
{
HashMap
<
K
,
V
>
map
=
new
HashMap
<
K
,
V
>();
for
(
K
k
:
keySet
())
{
map
.
put
(
k
,
find
(
k
).
value
);
}
return
map
.
entrySet
();
}
/**
* Get the set of keys for resident entries.
*
* @return the set of keys
*/
public
synchronized
Set
<
K
>
keySet
()
{
HashSet
<
K
>
set
=
new
HashSet
<
K
>();
for
(
Segment
<
K
,
V
>
s
:
segments
)
{
set
.
addAll
(
s
.
keySet
());
}
return
set
;
}
/**
* Get the number of non-resident entries in the cache.
*
* @return the number of non-resident entries
*/
public
int
sizeNonResident
()
{
int
x
=
0
;
for
(
Segment
<
K
,
V
>
s
:
segments
)
{
x
+=
s
.
sizeNonResident
();
}
return
x
;
}
/**
* Get the length of the internal map array.
*
* @return the size of the array
*/
public
int
sizeMapArray
()
{
int
x
=
0
;
for
(
Segment
<
K
,
V
>
s
:
segments
)
{
x
+=
s
.
sizeMapArray
();
}
return
x
;
}
/**
* Get the number of hot entries in the cache.
*
* @return the number of hot entries
*/
public
int
sizeHot
()
{
int
x
=
0
;
for
(
Segment
<
K
,
V
>
s
:
segments
)
{
x
+=
s
.
sizeHot
();
}
return
x
;
}
/**
* Get the number of resident entries.
*
* @return the number of entries
*/
public
int
size
()
{
int
x
=
0
;
for
(
Segment
<
K
,
V
>
s
:
segments
)
{
x
+=
s
.
size
();
}
return
x
;
}
/**
* Get the list of keys. This method allows to view the internal state of
* the cache.
*
* @param cold if true, only keys for the cold entries are returned
* @param nonResident true for non-resident entries
* @return the key list
*/
public
synchronized
List
<
K
>
keys
(
boolean
cold
,
boolean
nonResident
)
{
ArrayList
<
K
>
keys
=
new
ArrayList
<
K
>();
for
(
Segment
<
K
,
V
>
s
:
segments
)
{
keys
.
addAll
(
s
.
keys
(
cold
,
nonResident
));
}
return
keys
;
}
/**
* A cache segment
*
* @param <K> the key type
* @param <V> the value type
*/
static
class
Segment
<
K
,
V
>
{
/**
* How many other item are to be moved to the top of the stack before
* the current item is moved.
*/
private
int
stackMoveDistance
=
20
;
/**
* The maximum memory this cache should use.
*/
private
long
maxMemory
;
/**
* The average memory used by one entry.
*/
private
int
averageMemory
;
/**
* The currently used memory.
*/
private
long
usedMemory
;
/**
* The number of (hot, cold, and non-resident) entries in the map.
*/
private
int
mapSize
;
/**
* The bit mask that is applied to the key hash code to get the index in the
* map array. The mask is the length of the array minus one.
*/
private
int
mask
;
/**
* The LIRS stack size.
*/
private
int
stackSize
;
/**
* The size of the LIRS queue for resident cold entries.
*/
private
int
queueSize
;
/**
* The size of the LIRS queue for non-resident cold entries.
*/
private
int
queue2Size
;
/**
* The map array. The size is always a power of 2.
*/
private
Entry
<
K
,
V
>[]
entries
;
/**
* The stack of recently referenced elements. This includes all hot entries,
* the recently referenced cold entries, and all non-resident cold entries.
*/
private
Entry
<
K
,
V
>
stack
;
/**
* The queue of resident cold entries.
*/
private
Entry
<
K
,
V
>
queue
;
/**
* The queue of non-resident cold entries.
*/
private
Entry
<
K
,
V
>
queue2
;
/**
* The number of times any item was moved to the top of the stack.
*/
private
int
stackMoveCounter
;
/**
* Create a new cache.
*
* @param maxMemory the maximum memory to use
* @param averageMemory the average memory usage of an object
*/
Segment
(
long
maxMemory
,
int
averageMemory
)
{
setMaxMemory
(
maxMemory
);
setAverageMemory
(
averageMemory
);
clear
();
}
synchronized
void
clear
()
{
// calculate the size of the map array
// assume a fill factor of at most 80%
long
maxLen
=
(
long
)
(
maxMemory
/
averageMemory
/
0.75
);
// the size needs to be a power of 2
long
l
=
8
;
while
(
l
<
maxLen
)
{
l
+=
l
;
}
// the array size is at most 2^31 elements
int
len
=
(
int
)
Math
.
min
(
1L
<<
31
,
l
);
// the bit mask has all bits set
mask
=
len
-
1
;
// initialize the stack and queue heads
stack
=
new
Entry
<
K
,
V
>();
stack
.
stackPrev
=
stack
.
stackNext
=
stack
;
queue
=
new
Entry
<
K
,
V
>();
queue
.
queuePrev
=
queue
.
queueNext
=
queue
;
queue2
=
new
Entry
<
K
,
V
>();
queue2
.
queuePrev
=
queue2
.
queueNext
=
queue2
;
// first set to null - avoiding out of memory
entries
=
null
;
@SuppressWarnings
(
"unchecked"
)
Entry
<
K
,
V
>[]
e
=
new
Entry
[
len
];
entries
=
e
;
mapSize
=
0
;
usedMemory
=
0
;
stackSize
=
queueSize
=
queue2Size
=
0
;
}
V
peek
(
K
key
,
int
hash
)
{
Entry
<
K
,
V
>
e
=
find
(
key
,
hash
);
return
e
==
null
?
null
:
e
.
value
;
}
int
getMemory
(
K
key
,
int
hash
)
{
Entry
<
K
,
V
>
e
=
find
(
key
,
hash
);
return
e
==
null
?
0
:
e
.
memory
;
}
V
get
(
Object
key
,
int
hash
)
{
Entry
<
K
,
V
>
e
=
find
(
key
,
hash
);
if
(
e
==
null
)
{
// either the entry was not found
return
null
;
}
V
value
=
e
.
value
;
if
(
value
==
null
)
{
// it was a non-resident entry
return
null
;
}
if
(
e
.
isHot
())
{
if
(
e
!=
stack
.
stackNext
)
{
if
(
stackMoveDistance
==
0
||
stackMoveCounter
-
e
.
topMove
>
stackMoveDistance
)
{
access
(
key
,
hash
);
}
}
}
else
{
access
(
key
,
hash
);
}
return
value
;
}
/**
* Access an item, moving the entry to the top of the stack or front of the
* queue if found.
*
* @param key the key
*/
private
synchronized
void
access
(
Object
key
,
int
hash
)
{
Entry
<
K
,
V
>
e
=
find
(
key
,
hash
);
if
(
e
==
null
||
e
.
value
==
null
)
{
return
;
}
if
(
e
.
isHot
())
{
if
(
e
!=
stack
.
stackNext
)
{
if
(
stackMoveDistance
==
0
||
stackMoveCounter
-
e
.
topMove
>
stackMoveDistance
)
{
// move a hot entries to the top of the stack
// unless it is already there
boolean
wasEnd
=
e
==
stack
.
stackPrev
;
removeFromStack
(
e
);
if
(
wasEnd
)
{
// if moving the last entry, the last entry
// could not be cold, which is not allowed
pruneStack
();
}
addToStack
(
e
);
}
}
}
else
{
removeFromQueue
(
e
);
if
(
e
.
stackNext
!=
null
)
{
// resident cold entries become hot
// if they are on the stack
removeFromStack
(
e
);
// which means a hot entry needs to become cold
convertOldestHotToCold
();
}
else
{
// cold entries that are not on the stack
// move to the front of the queue
addToQueue
(
queue
,
e
);
}
// in any case, the cold entry is moved to the top of the stack
addToStack
(
e
);
}
}
V
put
(
K
key
,
V
value
,
int
hash
)
{
return
put
(
key
,
value
,
hash
,
averageMemory
);
}
synchronized
V
put
(
K
key
,
V
value
,
int
hash
,
int
memory
)
{
if
(
value
==
null
)
{
throw
new
NullPointerException
();
}
V
old
;
Entry
<
K
,
V
>
e
=
find
(
key
,
hash
);
if
(
e
==
null
)
{
old
=
null
;
}
else
{
old
=
e
.
value
;
remove
(
key
,
hash
);
}
e
=
new
Entry
<
K
,
V
>();
e
.
key
=
key
;
e
.
value
=
value
;
e
.
memory
=
memory
;
int
index
=
hash
&
mask
;
e
.
mapNext
=
entries
[
index
];
entries
[
index
]
=
e
;
usedMemory
+=
memory
;
if
(
usedMemory
>
maxMemory
&&
mapSize
>
0
)
{
// an old entry needs to be removed
evict
(
e
);
}
mapSize
++;
// added entries are always added to the stack
addToStack
(
e
);
return
old
;
}
synchronized
V
remove
(
Object
key
,
int
hash
)
{
int
index
=
hash
&
mask
;
Entry
<
K
,
V
>
e
=
entries
[
index
];
if
(
e
==
null
)
{
return
null
;
}
V
old
;
if
(
e
.
key
.
equals
(
key
))
{
old
=
e
.
value
;
entries
[
index
]
=
e
.
mapNext
;
}
else
{
Entry
<
K
,
V
>
last
;
do
{
last
=
e
;
e
=
e
.
mapNext
;
if
(
e
==
null
)
{
return
null
;
}
}
while
(!
e
.
key
.
equals
(
key
));
old
=
e
.
value
;
last
.
mapNext
=
e
.
mapNext
;
}
mapSize
--;
usedMemory
-=
e
.
memory
;
if
(
e
.
stackNext
!=
null
)
{
removeFromStack
(
e
);
}
if
(
e
.
isHot
())
{
// when removing a hot entry, the newest cold entry gets hot,
// so the number of hot entries does not change
e
=
queue
.
queueNext
;
if
(
e
!=
queue
)
{
removeFromQueue
(
e
);
if
(
e
.
stackNext
==
null
)
{
addToStackBottom
(
e
);
}
}
}
else
{
removeFromQueue
(
e
);
}
pruneStack
();
return
old
;
}
/**
* Evict cold entries (resident and non-resident) until the memory limit is
* reached.
*
* @param newCold a new cold entry
*/
private
void
evict
(
Entry
<
K
,
V
>
newCold
)
{
// ensure there are not too many hot entries:
// left shift of 5 is multiplication by 32, that means if there are less
// than 1/32 (3.125%) cold entries, a new hot entry needs to become cold
while
((
queueSize
<<
5
)
<
mapSize
)
{
convertOldestHotToCold
();
}
// the new cold entry is at the top of the queue
addToQueue
(
queue
,
newCold
);
// the oldest resident cold entries become non-resident
while
(
usedMemory
>
maxMemory
)
{
Entry
<
K
,
V
>
e
=
queue
.
queuePrev
;
usedMemory
-=
e
.
memory
;
removeFromQueue
(
e
);
e
.
value
=
null
;
e
.
memory
=
0
;
addToQueue
(
queue2
,
e
);
// the size of the non-resident-cold entries needs to be limited
while
(
queue2Size
+
queue2Size
>
stackSize
)
{
e
=
queue2
.
queuePrev
;
int
hash
=
getHash
(
e
.
key
);
remove
(
e
.
key
,
hash
);
}
}
}
private
void
convertOldestHotToCold
()
{
// the last entry of the stack is known to be hot
Entry
<
K
,
V
>
last
=
stack
.
stackPrev
;
// remove from stack - which is done anyway in the stack pruning, but we
// can do it here as well
removeFromStack
(
last
);
// adding an entry to the queue will make it cold
addToQueue
(
queue
,
last
);
pruneStack
();
}
/**
* Ensure the last entry of the stack is cold.
*/
private
void
pruneStack
()
{
while
(
true
)
{
Entry
<
K
,
V
>
last
=
stack
.
stackPrev
;
if
(
last
==
stack
||
last
.
isHot
())
{
break
;
}
// the cold entry is still in the queue
removeFromStack
(
last
);
}
}
/**
* Try to find an entry in the map.
*
* @param key the key
* @return the entry (might be a non-resident)
*/
Entry
<
K
,
V
>
find
(
Object
key
,
int
hash
)
{
int
index
=
hash
&
mask
;
Entry
<
K
,
V
>
e
=
entries
[
index
];
while
(
e
!=
null
&&
!
e
.
key
.
equals
(
key
))
{
e
=
e
.
mapNext
;
}
return
e
;
}
private
void
addToStack
(
Entry
<
K
,
V
>
e
)
{
e
.
stackPrev
=
stack
;
e
.
stackNext
=
stack
.
stackNext
;
e
.
stackNext
.
stackPrev
=
e
;
stack
.
stackNext
=
e
;
stackSize
++;
e
.
topMove
=
stackMoveCounter
++;
}
private
void
addToStackBottom
(
Entry
<
K
,
V
>
e
)
{
e
.
stackNext
=
stack
;
e
.
stackPrev
=
stack
.
stackPrev
;
e
.
stackPrev
.
stackNext
=
e
;
stack
.
stackPrev
=
e
;
stackSize
++;
}
private
void
removeFromStack
(
Entry
<
K
,
V
>
e
)
{
e
.
stackPrev
.
stackNext
=
e
.
stackNext
;
e
.
stackNext
.
stackPrev
=
e
.
stackPrev
;
e
.
stackPrev
=
e
.
stackNext
=
null
;
stackSize
--;
}
private
void
addToQueue
(
Entry
<
K
,
V
>
q
,
Entry
<
K
,
V
>
e
)
{
e
.
queuePrev
=
q
;
e
.
queueNext
=
q
.
queueNext
;
e
.
queueNext
.
queuePrev
=
e
;
q
.
queueNext
=
e
;
if
(
e
.
value
!=
null
)
{
queueSize
++;
}
else
{
queue2Size
++;
}
}
private
void
removeFromQueue
(
Entry
<
K
,
V
>
e
)
{
e
.
queuePrev
.
queueNext
=
e
.
queueNext
;
e
.
queueNext
.
queuePrev
=
e
.
queuePrev
;
e
.
queuePrev
=
e
.
queueNext
=
null
;
if
(
e
.
value
!=
null
)
{
queueSize
--;
}
else
{
queue2Size
--;
}
}
synchronized
List
<
K
>
keys
(
boolean
cold
,
boolean
nonResident
)
{
ArrayList
<
K
>
keys
=
new
ArrayList
<
K
>();
if
(
cold
)
{
Entry
<
K
,
V
>
start
=
nonResident
?
queue2
:
queue
;
for
(
Entry
<
K
,
V
>
e
=
start
.
queueNext
;
e
!=
start
;
e
=
e
.
queueNext
)
{
keys
.
add
(
e
.
key
);
}
}
else
{
for
(
Entry
<
K
,
V
>
e
=
stack
.
stackNext
;
e
!=
stack
;
e
=
e
.
stackNext
)
{
keys
.
add
(
e
.
key
);
}
}
return
keys
;
}
int
size
()
{
return
mapSize
-
queue2Size
;
}
boolean
containsKey
(
Object
key
,
int
hash
)
{
Entry
<
K
,
V
>
e
=
find
(
key
,
hash
);
return
e
!=
null
&&
e
.
value
!=
null
;
}
synchronized
Set
<
K
>
keySet
()
{
HashSet
<
K
>
set
=
new
HashSet
<
K
>();
for
(
Entry
<
K
,
V
>
e
=
stack
.
stackNext
;
e
!=
stack
;
e
=
e
.
stackNext
)
{
set
.
add
(
e
.
key
);
}
for
(
Entry
<
K
,
V
>
e
=
queue
.
queueNext
;
e
!=
queue
;
e
=
e
.
queueNext
)
{
set
.
add
(
e
.
key
);
}
return
set
;
}
synchronized
Set
<
Map
.
Entry
<
K
,
V
>>
entrySet
()
{
HashMap
<
K
,
V
>
map
=
new
HashMap
<
K
,
V
>();
for
(
K
k
:
keySet
())
{
int
hash
=
getHash
(
k
);
map
.
put
(
k
,
find
(
k
,
hash
).
value
);
}
return
map
.
entrySet
();
}
int
sizeHot
()
{
return
mapSize
-
queueSize
-
queue2Size
;
}
int
sizeNonResident
()
{
return
queue2Size
;
}
int
sizeMapArray
()
{
return
entries
.
length
;
}
long
getUsedMemory
()
{
return
usedMemory
;
}
void
setMaxMemory
(
long
maxMemory
)
{
if
(
maxMemory
<=
0
)
{
throw
new
IllegalArgumentException
(
"Max memory must be larger than 0"
);
}
this
.
maxMemory
=
maxMemory
;
}
long
getMaxMemory
()
{
return
maxMemory
;
}
void
setAverageMemory
(
int
averageMemory
)
{
if
(
averageMemory
<=
0
)
{
throw
new
IllegalArgumentException
(
"Average memory must be larger than 0"
);
}
this
.
averageMemory
=
averageMemory
;
}
}
/**
* A cache entry. Each entry is either hot (low inter-reference recency;
* LIR), cold (high inter-reference recency; HIR), or non-resident-cold. Hot
* entries are in the stack only. Cold entries are in the queue, and may be
* in the stack. Non-resident-cold entries have their value set to null and
* are in the stack and in the non-resident queue.
*
* @param <K> the key type
* @param <V> the value type
*/
static
class
Entry
<
K
,
V
>
{
/**
* The key.
*/
K
key
;
/**
* The value. Set to null for non-resident-cold entries.
*/
V
value
;
/**
* The estimated memory used.
*/
int
memory
;
/**
* When the item was last moved to the top of the stack.
*/
int
topMove
;
/**
* The next entry in the stack.
*/
Entry
<
K
,
V
>
stackNext
;
/**
* The previous entry in the stack.
*/
Entry
<
K
,
V
>
stackPrev
;
/**
* The next entry in the queue (either the resident queue or the
* non-resident queue).
*/
Entry
<
K
,
V
>
queueNext
;
/**
* The previous entry in the queue.
*/
Entry
<
K
,
V
>
queuePrev
;
/**
* The next entry in the map
*/
Entry
<
K
,
V
>
mapNext
;
/**
* Whether this entry is hot. Cold entries are in one of the two queues.
*
* @return whether the entry is hot
*/
boolean
isHot
()
{
return
queueNext
==
null
;
}
}
}
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论