Skip to content

  • 项目
  • 群组
  • 代码片段
  • 帮助
    • 正在加载...
    • 帮助
    • 为 GitLab 提交贡献
  • 登录/注册
D
dailynaukri
  • 项目
    • 项目
    • 详情
    • 活动
    • 周期分析
  • 议题 1
    • 议题 1
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 0
    • 合并请求 0
  • CI / CD
    • CI / CD
    • 流水线
    • 作业
    • 计划
  • Wiki
    • Wiki
  • 代码片段
    • 代码片段
  • 成员
    • 成员
  • 折叠边栏
  • 活动
  • 创建新议题
  • 作业
  • 议题看板
  • Ryder Tunstall
  • dailynaukri
  • Issues
  • #1

已关闭
未关闭
在 4月 05, 2025 由 Ryder Tunstall@rydertunstall2
  • 违规举报
  • 新建问题
举报违规 新建问题

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with reinforcement learning (RL) to improve thinking ability. DeepSeek-R1 attains outcomes on par with OpenAI's o1 design on several criteria, consisting of MATH-500 and SWE-bench.

DeepSeek-R1 is based on DeepSeek-V3, a mix of professionals (MoE) design recently open-sourced by DeepSeek. This base model is fine-tuned utilizing Group Relative Policy Optimization (GRPO), a reasoning-oriented variant of RL. The research study team likewise performed understanding distillation from DeepSeek-R1 to open-source Qwen and Llama designs and released several versions of each; these designs outshine bigger models, including GPT-4, on mathematics and coding criteria.

[DeepSeek-R1 is] the initial step towards enhancing language model thinking abilities utilizing pure reinforcement learning (RL). Our goal is to explore the potential of LLMs to develop reasoning abilities without any supervised data, focusing on their self-evolution through a pure RL process...DeepSeek-R1 ... excels in a large variety of jobs, including creative writing, general question answering, modifying, summarization, and more. Additionally, DeepSeek-R1 demonstrates impressive performance on jobs needing long-context understanding, significantly exceeding DeepSeek-V3 on long-context benchmarks.

To develop the model, DeepSeek began with DeepSeek-V3 as a base. They first tried fine-tuning it only with RL, and with no supervised fine-tuning (SFT), producing a design called DeepSeek-R1-Zero, which they have actually also released. This design shows strong thinking performance, but" effective reasoning habits, it faces numerous problems. For instance, DeepSeek-R1-Zero deals with challenges like bad readability and language mixing."

To resolve this, the group used a brief phase of SFT to avoid the "cold start" issue of RL. They gathered several thousand examples of chain-of-thought thinking to utilize in SFT of DeepSeek-V3 before running RL. After the RL process converged, they then gathered more SFT data using rejection tasting, resulting in a dataset of 800k samples. This dataset was utilized for more fine-tuning and to produce the distilled designs from Llama and Qwen.

DeepSeek evaluated their model on a variety of reasoning, mathematics, and coding criteria and compared it to other designs, including Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 surpassed all of them on numerous of the standards, consisting of AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a couple of days of its release, systemcheck-wiki.de the LMArena announced that DeepSeek-R1 was ranked # 3 total in the arena and # 1 in coding and mathematics. It was also tied for # 1 with o1 in "Hard Prompt with Style Control" classification.

Django structure co-creator Simon Willison wrote about his try outs one of the DeepSeek distilled Llama models on his blog site:

Each reaction begins with a ... pseudo-XML tag containing the chain of thought utilized to assist generate the action. [Given the prompt] "a joke about a pelican and a walrus who run a tea room together" ... It then thought for 20 paragraphs before outputting the joke! ... [T] he joke is terrible. But the process of getting there was such an intriguing insight into how these brand-new models work.

Andrew Ng's newsletter The Batch wrote about DeepSeek-R1:

DeepSeek is quickly becoming a of open designs. Not only are these designs excellent entertainers, but their license allows usage of their outputs for distillation, possibly pressing forward the state of the art for language models (and multimodal models) of all sizes.

The DeepSeek-R1 models are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This content remains in the AI, ML & Data Engineering subject

Related Topics:

- AI, ML & Data Engineering - Generative AI

  • Large language models

    - Related Editorial

    Related Sponsored Content

    - [eBook] Getting Started with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you ready to experiment with advanced technologies? You can begin constructing intelligent apps with totally free Azure app, data, and AI services to lessen upfront expenses. Learn More.

    How could we enhance? Take the InfoQ reader survey

    Each year, we seek feedback from our readers to help us enhance InfoQ. Would you mind spending 2 minutes to share your feedback in our short study? Your feedback will straight assist us constantly develop how we support you. The InfoQ Team Take the study

    Related Content

    The InfoQ Newsletter

    A round-up of recently's material on InfoQ sent out every Tuesday. Join a community of over 250,000 senior developers.
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无截止日期
0
标记
无
指派标记
  • 查看项目标记
引用: rydertunstall2/dailynaukri#1